الجمهوريــــة الجزائرية الديمقراطية الشعبية REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE وزارة التعليم العالمي والبحث العلمي

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

المدرسية الوطنية العليا للفلاحة - الحراش

ECOLE NATIONALE SUPERIEURE AGRONOMIQUE – EL HARRACH

Département : Génie Rural

القسم: الهندسة الريفية

Spécialité : Machinisme et Agroéquipements

التخصص: علم الآلية والعتاد الزراعي

THESE

EN VUE DE L'OBTENTION DU DIPLOME DE DOCTORAT EN SCIENCES AGRONOMIQUES

Thème

Le potentiel énergétique de la nappe Albienne en Algérie : Transformation et Exploitation en Agriculture

Présentée par : M. ETSOURI Salim Soutenue publiquement le 22 / 09 / 2020

Devant le jury composé de :

Président: M. MOUHOUCHE B. Pr. ENSA

Directeur de Thèse : M. KACI F. Pr. ENSA

Co-Directeur de Thèse : M. BOUAZIZ M. Pr. ENP

Examinateurs: M. GUENDOUZ A. Pr. Univ. Blida

: M. SIDOUMOU M. Pr. Univ. Blida

Dédicaces

A mes parents,

A ma chère et tendre épouse,

A mes frères et mes enfants,

A tous mes collègues et amis (es).

Salim Etsouri

Remerciements

الحَمْدُ للمِ النَّذِي بِنِعْمَتِمِ تَتِعُ الصَّالِحَاتُ

Je tiens tout d'abord à exprimer au Professeur KACI Ferhat de l'ENSA-Alger, ainsi qu'au Professeur BOUAZIZ Mohamed de l'ENP-Alger, à qui je dois le respect, toute ma gratitude et ma sincère reconnaissance pour m'avoir dirigé dans ce travail, pour leurs précieux conseils, le dévouement, l'orientation, la patience et pour leurs remarques pertinentes et leur confiance. Qu'ils acceptent le témoignage de ma profonde gratitude.

C'est avec beaucoup de reconnaissance que j'adresse mes sincères remerciements au Professeur MOUHOUCHE Brahim de l'ENSA-Alger pour avoir accepté de présider ce jury. J'adresse mes vifs remerciements au Professeur GUENDOUZ Abdelhamid ainsi qu'au Professeur SIDOUMOU Mohamed de l'université de Blida pour m'avoir honoré en acceptant de juger ce travail. Un grand respect à ces membres du jury qui continuent leur mission noble en ces moments très critiques (COVID-19).

Je tiens à remercier spécialement tous ceux qui m'ont accueilli et collaboré avec moi, notamment le personnel de l'ONID-Touggourt, ABHS-Ouargla, ONID-Ouargla, CRSTRA-Ouargla, ainsi que les agriculteurs qui m'ont ouvert la porte de leur exploitation. Je les remercie tous pour leur accueil bienveillant.

J'adresse une pensée particulière à mes frères, mes proches, membres de ma famille et membres de ma belle-famille. Ils m'ont toujours soutenu tout au long de l'élaboration de ce document, leurs encouragements m'ont été une source inépuisable d'énergie et de volonté.

Mes sincères et affectueux remerciements vont à ma tendre épouse et mes chers enfants pour leur patience, leur soutien et leurs encouragements. Aucun mot ne peut exprimer ma reconnaissance et ma fierté de les avoir à mes côtés.

Je remercie particulièrement ceux qui ont donné un sens à mon existence, à ceux qui m'ont soutenu durant tout mon parcours : à vous mes très chers parents à qui je ne saurais jamais exprimer toute ma reconnaissance. Qu'ils trouvent ici l'accomplissement de leurs vœux et l'expression de ma profonde gratitude.

J'aimerais également exprimer mes vifs remerciements et amitiés à tous mes amis (es) et collègues de l'ENSA et de l'université d'El-Tarf pour leur aide, leurs encouragements et leur précieux soutien pour terminer ce travail, sans oublier les bons moments passés en leur compagnie.

J'adresse mes remerciements à toutes les personnes qui ont contribué de près ou de loin à la réalisation de cette thèse. Les citer dans ces remerciements nécessite un tome 2.

SOMMAIRE

INTRODUCTION GENERALE 1

PREMIERE PARTIE – SYNTHESE BIBLIOGRAPHIQUE

CHAPITRE I – LE CONTINENTAL INTERCALAIRE

I.1. LE MILIEU SAHARIEN	4
I.2. ETUDE DES SYSTEMES AQUIFERES DU SAHARA SEPTENTRIONAL	4
I.3. ETUDES REALISEES SUR LES SYSTEMES AQUIFERES DU SAHARA SEPTENTRIONAL	7
I.4. Systemes Aquiferes en Algerie	8
I.5. LE CONTINENTAL INTERCALAIRE	9
I.5.1. Généralités	9
I.5.2. Particularités de la nappe	11
I.5.2.1. Epaisseur du réservoir	11
I.5.2.2. Toit du réservoir	12
I.5.2.3. Autres caractéristiques du réservoir	13
I.5.3. Alimentation	14
I.5.4. Exutoires	15
I.5.4.1. Les exutoires naturels	15
I.5.4.2. Exutoires artificiels	15
I.5.5. Ecoulement	15
I.5.6. Qualité de l'eau	16
1.6. ETAT ACTUEL DES CONNAISSANCES DE L'EXPLOITATION DE LA NAPPE DU CONTINENTAL INTERCALAIRE	17
I.7. Affectation de l'eau	17
I.7.1. Eau à usage agricole	17
I.7.2. Eau potable et industrielle	18
I.8. LES CARACTERISTIQUES DES SITES D'EXPLOITATION DE L'EAU DU CI	18
I.8.1. La profondeur des forages	18
I.8.2. Les hauteurs de pompage	18
I.8.3. La température	18
·	

	I.8.4. La salinité	. 19
	1.8.5. Le pH	. 19
	I.8.6. Enjeux et risques liés à l'exploitation du SASS	. 19
1.9	3. REFLEXION SUR LA SIMULATION EXPLORATOIRE DU SASS (2000-2050)	.19

CHAPITRE II – L'HYDROELECTRICITE

II.1. L'ENERGIE	21
II.1.1. L'énergie électrique	21
II.1.2. Le stockage de l'énergie	23
II.1.3. Les différents modes de stockage	24
II.1.3.1. Le stockage électrochimique	24
II.1.3.2. Le stockage mécanique	24
II.1.3.3. Le stockage thermique	25
II.2. L'HYDROELECTRICITE DANS LE MONDE ET EN ALGERIE	26
II.3. LES TECHNOLOGIES D'ENERGIES PROPRES	27
II.4. LES BARRAGES HYDROELECTRIQUES	27
II.5. LES PETITES CENTRALES HYDROELECTRIQUES	28
II.5.1. Tailles des petites centrales hydroélectriques	28
II.5.2. Différents composants d'une petite centrale hydroélectrique	29
II.5.3. Grandeurs caractéristiques des petites centrales hydroélectriques	29
II.5.4. Développement de projet de petite centrale hydroélectrique	29
II.5.4.1. Facteur de viabilité	
II.5.4.2. Analyse de projet	30
a. Analyse préfaisabilité	30
b. Analyse de faisabilité	31
c. Ingénierie et développement	31
d. Construction et mise en service	31
II 6. QUALITE DE L'ELECTRICITE	32

DEUXIEME PARTIE – ENQUETE ET ESSAIS D'INTEGRATION DE MICROCENTRALE HYDROELECTRIQUE

CHAPITRE III – ENQUETE SUR LE CONTINENTAL INTERCALAIRE ET ANALYSE DE SON POTENTIEL ENERGETIQUE

III.1. LE FORAGE ALBIEN ET SES CARACTERISTIQUES	33
III.1.1. Généralités	33
III.1.2. Potentialités énergétiques	34
III.1.2.1. Débit et pression	34
III.1.2.2. Le potentiel exploitable P _{exp}	35
III.2. DEPOUILLEMENT DE L'ENQUETE	36
III.3. DIFFICULTES RENCONTREES	38
III.4. ANALYSE DES RESULTATS DE L'ENQUETE SUR LES FORAGES RECENSES	38
III.4.1. Analyse du volet « état des forages »	38
III.4.2. Analyse du volet « Paramètres énergétiques »	40
III.4.3. Analyse du volet « Usage de l'eau des forages »	42
III.4.4. Analyse du volet « localisation des forages »	43
III.4.5. Analyse du volet « date de mise en service des forages »	47
III.5. ANALYSE DES DONNEES SUR LES FORAGES AYANT LE COUPLE DE PARAMETRES	
« DEBIT – PRESSION »	49
III.6. ANALYSE DE L'ASPECT ENERGETIQUE DE LA NAPPE DU CI	52
III.6.1. Vue d'ensemble	52
III.6.2. Traitement des données relatives au potentiel énergétique	52
III.6.3. Analyse des résultats	53
III.6.3.1. Présentation générale	53
III.6.3.2. Réalisation de la carte du potentiel énergétique de la nappe albienne	54
CHAPITRE IV – LA MICROCENTRALE HYDROELECTRIQUE	:
TESTS ET REFLEXIONS SUR SON INTEGRATION IV.1. Presentation de la microcentrale hydroelectrique utilisée	59
IV.1.1. Cadre général	
IV.1.2. Description de la microcentrale hydroélectrique utilisée	
IV.1.2.1. La roue Pelton	
	00

ANNEXES	98
REFERENCES BIBLIOGRAPHIQUES	92
CONCLUSION GENERALE	88
IV.5.3. Commodités des fermes avoisinantes	87
IV.5.2. Irrigation	86
IV.5.1. Refroidissement de l'eau issue des forages albiens	85
IV.5. LES MICROCENTRALES HYDROELECTRIQUES ET LES EXPLOITATIONS AGRICOLES	85
ENERGETIQUE DES FORAGES ALBIENS	
IV.4. IMPACTS D'INTEGRATION DES MICROCENTRALES HYDROELECTRIQUES POUR L'EXPLOITATION DU POTENTIEL	
IV.3.3. Résultats de l'étude de faisabilité sur les forages albiens recensés	82
IV.3.2. Paramètres de sortie dans RETScreen « Output »	
IV.3.1.6. Onglets « Finance » et « Risque »	
IV.3.1.5. Onglet « Emission »	
IV.3.1.4. Onglet « Coût »	
IV.3.1.3. Onglet « Energie »	
IV.3.1.2. Onglet « Installation »	
IV.3.1.1. Onglet « Lieu »	79
IV.3.1. Paramètres d'entrée dans RETScreen « Input »	78
IV.3. SIMULATION D'INTEGRATION DES MICROCENTRALES HYDROELECTRIQUES AUX FORAGES ALBIENS	77
IV.2.5. Discussion de l'implantation des microcentrales hydroélectriques sur les forages albiens	76
IV.2.4. Second essai de la microcentrale hydroélectrique sur eau issue de forage albien	71
IV.2.3. Premier essai de la microcentrale hydroélectrique sur eau issue de forage albien	
IV.2.2. Pré–test sur une canalisation haut débit de la ville de Chifa	
IV.2.1. Conception et essai in situ d'une turbine	
AUX FORAGES EXISTANTS	
IV.2. Presentation des differents tests/tentatives d'adaptation de la microcentrale hydroelectrique	
IV.1.2.1. Le régulateur électronique	63
IV.1.2.2. Le tableau de commande électrique	
IV.1.2.1. La génératrice	
IV.1.2.3. Le bloc d'alimentation	
IV.1.2.2. Le bloc Turbine	61

Liste des Tableaux

TABLEAU 1 : SITUATION DU RESERVOIR PAR RAPPORT AU SOL EN METRE	12
TABLEAU 2 : DONNEES GENERALES SUR LA NAPPE DU CONTINENTAL INTERCALAIRE EN ALGERIE	14
TABLEAU 3 : ENERGIE PRIMAIRE DE L'ELECTRICITE	23
TABLEAU 4 : EXEMPLE DE STOCKAGE D'ELECTRICITE	24
TABLEAU 5 : PARAMETRES D'ENTREE PRIS EN CONSIDERATION DANS L'ANALYSE	80
TABLEAU 6 : BILAN THERMIQUE DE LA TOUR DE REFROIDISSEMENT	86

Liste des Figures

FIGURE 1: SYSTEMES AQUIFERES DU SAHARA SEPTENTRIONAL	6
FIGURE 2 : DISTRIBUTION DES SALINITES (G/L) DES EAUX POMPEES DANS LE SASS	7
FIGURE 3 : SITUATION GEOGRAPHIQUE DU BASSIN DU SAHARA SEPTENTRIONAL EN ALGERIE	9
FIGURE 4 : TETE D'UN FORAGE DU CONTINENTAL INTERCALAIRE A ZAOUIET RIAB, DJAMAA	10
FIGURE 5 : REPARTITION DU CONTINENTAL INTERCALAIRE EN ALGERIE	11
FIGURE 6 : COUPE HYDROGEOLOGIQUE TRANSVERSALE MONTRANT LE TOIT ET LA SURFACE PIEZOMETRIQUE DU CI	13
FIGURE 7: PRODUCTION MONDIALE DE L'ELECTRICITE EN 2017	22
FIGURE 8 : PRINCIPE DU STOCKAGE GRAVITAIRE HYDRAULIQUE	25
FIGURE 9 : CAPACITE HYDROELECTRIQUE DANS LE MONDE EN 2018	26
FIGURE 10 : SCHEMA GENERAL D'UN FORAGE AVEC TOUR DE REFROIDISSEMENT – VUE DE DESSUS	34
FIGURE 11 : EFFECTIF DES FORAGES PAR PARAMETRE	37
FIGURE 12 : DISTRIBUTION DES FORAGES SELON LEUR ETAT	39
FIGURE 13 : DISTRIBUTION DES FORAGES SELON LES PARAMETRES ENERGETIQUES	40
FIGURE 14 : EVOLUTION DE LA COLLECTE DES DONNEES DE DEBIT EN FONCTION DE L'ANNEE DE REALISATION	41
FIGURE 15 : USAGE DE L'EAU DE LA NAPPE DU CI	42
FIGURE 16 : COMPARAISON DE L'USAGE DE L'EAU ENTRE LES FORAGES NON FONCTIONNELS ET LES FORAGES EXPLOITATION	
FIGURE 17 : REPARTITION DES FORAGES RECENSES PAR WILAYA	44
FIGURE 18 : POSITION GEOGRAPHIQUE DES FORAGES RECENSES DU CONTINENTAL INTERCALAIRE	45
FIGURE 19 : SITUATION DE LA PIEZOMETRIE PAR RAPPORT AU SOL EN 2038	46
FIGURE 20 : REPARTITION DES FORAGES RECENSES PAR DATE DE MISE EN SERVICE	47

FIGURE 21 : COMPARAISON ENTRE LE NOMBRE DE FORAGES ACTUELLEMENT EN EXPLOITATIONS ET TOUS LES	
FIGURE 22 : EVOLUTION DU NOMBRE MOYEN ANNUELLE DE FORAGE PAR CLASSE D'ANNEE	49
FIGURE 23 : REPARTITION DES FORAGES ACTUELLEMENT EN EXPLOITATION AVEC LES DONNEES « DEBIT- PRESSION » PAR COMMUNE ET PAR WILAYA	
FIGURE 24 : REPARTITION DES FORAGES ACTUELLEMENT EN EXPLOITATION ET AYANT LES DONNEES DE « DEE	
FIGURE 25 : REPARTITION DES FORAGES ACTUELLEMENT EN EXPLOITATION AVEC LES DONNEES « DEBIT- PRESSION » PAR PERIODE DE REALISATION	51
FIGURE 26 : PUISSANCE HYDRAULIQUE DES FORAGES DU CI ACTUELLEMENT EN EXPLOITATION	54
FIGURE 27 : CARTE DE DISTRIBUTION DU POTENTIEL ENERGETIQUE DES FORAGES ACTUELLEMENT EN EXPLOITATION ET AYANT LES DONNEES « DEBIT – PRESSION »	56
FIGURE 28 : AGRANDISSEMENT DE QUELQUES ZONES DE LA FIGURE 27	57
FIGURE 29 : LA MICROCENTRALE HYDROELECTRIQUE UTILISEE	60
FIGURE 30 : LA ROUE PELTON DE LA MICROCENTRALE HYDROELECTRIQUE	60
FIGURE 31 : LE BLOC TURBINE DE LA MICROCENTRALE HYDROELECTRIQUE ET SES INJECTEURS	61
FIGURE 32 : LE BLOC D'ALIMENTATION DE LA MICROCENTRALE HYDROELECTRIQUE ET SES INJECTEURS	62
FIGURE 33 : SCHEMATISATION DU PRINCIPE DE FONCTIONNEMENT DE L'INSTALLATION TESTEE A L'ENSA EX. INA	64
FIGURE 34 : LA PREMIERE VERSION DE LA TURBINE	65
FIGURE 35 : CADRE GENERAL DE LA MICROCENTRALE HYDROELECTRIQUE	66
FIGURE 36 : ESSAI DE LA MICROCENTRALE AU NIVEAU DE LA COMMUNE DE CHIFA-WILAYA DE BLIDA (MARS, 2013)	66
FIGURE 37 : ESSAI DE LA MICROCENTRALE AU NIVEAU DE LA FERME PILOTE DE HASSI BENABDALLAH - WILAYA	
FIGURE 38 : CADRE GENERAL DE L'ESSAI DE LA MICROCENTRALE AU NIVEAU DE LA FERME PILOTE DE HASSI BENABDALLAH - WILAYA DE OUARGLA (FIN MARS, 2013)	68
FIGURE 39 : CADRE GENERAL DU FORAGE 2 – HASSI BENABDALLAH – WILAYA DE OUARGLA	68
FIGURE 40 : TETE DU FORAGE 2 – HASSI BENABDALLAH, AVANT MODIFICATION	69

FIGURE 41 : TETE DU FORAGE 2 – HASSI BENABDALLAH, APRES MODIFICATION	69
FIGURE 42 : LA MICROCENTRALE HYDROELECTRIQUE APRES RACCORDEMENT A LA TETE DU FORAGE 2 –	
HASSI BENABDALLAH	70
FIGURE 43 : LA COMMANDE DE LA MICROCENTRALE HYDROELECTRIQUE APRES RACCORDEMENT	
INDIQUANT UNE TENSION DE 210VOLT A LA TETE DU FORAGE 2 – HASSI BENABDALLAH	70
FIGURE 44 : SITUATION GENERALE DU FORAGE DE LA COMMUNE DE OUMACHE - WILAYA DE BISKRA	71
FIGURE 45 : TETE DU FORAGE DE LA COMMUNE DE OUMACHE - WILAYA DE BISKRA	72
FIGURE 46 : LA CANALISATION CIBLEE POUR FAIRE LE TEST DE LA COMMUNE DE OUMACHE -	
WILAYA DE BISKRA	72
FIGURE 47 : SITUATION GENERALE DU FORAGE DE LA COMMUNE D'EL-HAOUCHE - WILAYA DE BISKRA	73
FIGURE 48 : CONSTITUANTS DU FORAGE DE LA COMMUNE D'E-HAOUCHE - WILAYA DE BISKRA	74
FIGURE 49 : INSTALLATION DE LA MICROCENTRALE HYDROELECTRIQUE DANS LA COMMUNE D'E-HAOUCHE -	
WILAYA DE BISKRA	75
FIGURE 50 : TENSION ET FREQUENCE ELECTRIQUES DU COURANT ISSU DE LA MICROCENTRALE HYDROELECTR	≀IQUE
DANS LA COMMUNE D'E-HAOUCHE - WILAYA DE BISKRA	75
FIGURE 51 : PRESENTATION DE LA FENETRE PRINCIPALE DU LOGICIEL RETSCREEN	78
FIGURE 52 : OUANTITES DE GES EMISES CONTRE LA REDUCTION ANNUELLE BRUTE DES EMISSIONS DE GES	83

Liste des Annexes

ANNEXE 1 :	: CARTE DU SAHARA SEPTENTRIONAL	98
ANNEXE 2 :	: CARTE DES ISOHYETES DU SASS EN MM/AN	99
ANNEXE 3	: CARTE PIEZOMETRIQUE DE REFERENCE DU CI	. 100
ANNEXE 4	FORAGES RECENSES AVEC TOUS LES PARAMETRES UTILES	. 101
ANNEXE 5 :	: ANALYSE STATISTIQUE	. 110
ANNEXE 6	FORAGES DU CI RECENSES AYANT LES DONNEES DE DEBIT ET DE PRESSION	. 112
ANNEXE 7 :	FORAGES ACTUELLEMENT EN EXPLOITATION AYANT LES PARAMETRES « DEBIT » ET « PRESSION SIMULEE » ET FORAGES EXCLUS	. 114
ANNEXE 8 :	PUISSANCE HYDRAULIQUE DES FORAGES CI ACTUELLEMENT EN EXPLOITATION	. 118
ANNEXE 9 :	LES DONNEES UTILISEES POUR LA CREATION DE LA CARTE	.121
ANNEXE 10	: RESULTATS DE L'ANALYSE RETSCREEN DE FAISABILITE DE PROJET HYDROELECTRIQUE APPLIQUE SUR TOUS LES FORAGES ALBIENS RECENSES INDIVIDUELLEMENT	. 124
ANNEXE 11	: POSITION GEOGRAPHIQUE DES FORAGES RECENSES DU CONTINENTAL INTERCALAIRE	.129
ANNEXE 12	EXPLOITATION ET AYANT LES DONNEES « DEBIT – PRESSION »	. 130

Liste des Abréviations et Acronymes

AEP : Approvisionnement en Eau Potable

CAES : Compressed Air Energy Storage

CDARS : Commissariat au Développement de l'Agriculture des Régions Sahariennes

CI : Continental Intercalaire

CT : Complexe Terminal

DA : Dinars Algérien

ENSA: Ecole Nationale Supérieure Agronomique

GES : Gaz à Effet de Serre

GWh : Gigawatt Heure

HPES: Hydro Pnuematic Energy Storage

INA : Institut National Agronomique

IND : IndustrieIRR : Irrigation

kW: kilowatt

kWh : Kilowatt Heure

Li-ion : Lithium-ion

MIXTE : AEP + IRR

MTEP : Méga-Tonne Equivalent Pétrole

MW : Mégawatt

Ni-Cd: Nickel-Cadmium

Ni-MH: Nickel-Métal Hydrure

OSS: Observatoire du Sahara et du Sahel

PATs: Pumps As Turbines (Pompes inversées)

SASS : Système Aquifère du Sahara Septentrional

SIG : Système d'Information Géographique

STEP : Station de Transfert d'Energie par Pompage

tCO₂ : Tonne équivalent CO₂

TEP: Tonne Equivalent Pétrole.

TJ : Téra-Joul

Introduction Générale

INTRODUCTION GENERALE

L'énergie et l'eau sont deux éléments indispensables à l'être humain et de manière globale, leurs demandes ne cessent d'augmenter. La croissance soutenue de la population mondiale et des niveaux de vie ne fait qu'amplifier ce phénomène. Les exigences croissantes des pays concernant la sécurité énergétique et la gestion des ressources en eau ont fait de l'hydroélectricité une source d'énergie de premier choix dans le monde.

De nos jours, un sixième de l'électricité mondiale, soit 4096 TWh est fourni par des centrales hydroélectriques faisant de l'hydroélectricité une source majeure d'énergie renouvelable (IEA, 2019).

En parallèle, la production énergétique mondiale est principalement assurée par les énergies fossiles. Ces dernières sont responsables d'une grande quantité de gaz à effets de serre (GES) émis dans l'environnement contribuant ainsi aux changements climatiques. Un des principaux défis de ce siècle sera de réduire la pauvreté tout en améliorant la qualité de l'environnement dans le respect du développement durable.

Étant donné les nombreux impacts environnementaux et sociaux négatifs historiquement associés aux grands barrages, une des solutions d'avenir de l'hydroélectricité se trouve dans les petites centrales hydroélectriques. La petite hydroélectricité contribue avec 2 % de la production d'énergie mondiale (Bastien, 2011).

Les pays en développement observent un intérêt grandissant pour les petites centrales hydroélectriques (PCH) leur permettant de créer une indépendance énergétique vis-à-vis de la volatilité des prix des énergies fossiles sur les marchés mondiaux et du risque associé à leurs importations. En effet, ces petits projets ont l'avantage pour les pays en développement d'être d'une grande fiabilité, et de n'engendrer que de très faible coût de construction et d'opération (Bastien, 2011).

La réduction des réserves de combustibles fossiles, la nécessité de réduire les émissions d'anhydride carbonique et la moindre disponibilité de ressources financières ont encouragé la production d'énergie à partir de sources renouvelables et, parallèlement, elles ont favorisé le développement de technologies permettant de limiter la consommation d'électricité (Margat, 2008).

La déclaration de « l'Assemblée du Millénaire des Nations Unies » (ONU, 2001) a fixé comme objectif de mettre fin à l'exploitation irrationnelle des ressources en eau, en formulant des stratégies de gestion de l'eau aux niveaux régional, national et local.

La mobilisation des eaux souterraines est peu assujettie à des équipements collectifs, à la différence de celle des eaux de surface qui nécessitent des ouvrages de dérivation et souvent de régulation et de transport. Ce sont des ressources permanentes, avec des débits peu variables offrant une ressource plus résistante que l'eau de surface aux aléas climatiques, donc une meilleure sécurité d'approvisionnement.

La nappe du Continental Intercalaire, dite Albienne, est très convoitée pour son eau en tant que ressource très largement mobilisée au Sahara Septentrional. Cependant, la partie énergétique est complètement négligée. Des études antérieures (Etsouri, 2008 ; CDARS, 1999b) ont mentionné l'énergie considérable que dégage la nappe albienne et que nous nommons « potentiel exploitable ». Malheureusement, ce potentiel est non seulement pas du tout exploité, mais aussi dissipé dans des bassins après passage sur des tours de refroidissement.

Nous avons voulu, par ce thème, étudier cet énorme potentiel énergétique, après transformation, et de voir les possibilités de l'exploiter à des fins agricoles répondant à une autosuffisance probable en énergie électrique des fermes avoisinantes.

Le principe de génération de l'électricité est bien connu dans la littérature scientifique. Cependant, il est nécessaire d'utiliser des turbogénérateurs usuels avec des caractéristiques spécifiques pour pouvoir les adapter aux forages albiens. Les petites centrales hydroélectriques semblent être la solution.

La nature de l'énergie et le type d'installation hydraulique disponible déterminent le genre de petites centrales hydroélectriques à prévoir pour cette même installation. Comme le forage albien n'a rien en commun avec les barrages (chute d'eau très élevée) ou les écoulements au fil de l'eau, il lui faut un matériel et un dispositif adaptés à ses caractéristiques.

Afin de répondre aux objectifs de cette étude, nous avons préparé un document qui se présente comme suit :

- ✓ Le 1^{er} chapitre vise à donner des informations précises sur la ressource en eau ciblée par cette étude, il s'agit du continental intercalaire, communément appelé « la nappe albienne ».
- ✓ Le 2^{ème} chapitre discute le potentiel énergétique d'une manière générale en présentant brièvement les petites centrales hydroélectriques, qui sont les équipements les mieux adaptés à notre situation.
- ✓ Le 3^{ème} chapitre présente une synthèse de l'enquête menée sur le potentiel énergétique de la nappe du continental intercalaire sur tout son ensemble sur le territoire algérien.
- ✓ Le 4^{ème} chapitre présente les différents tests et essais d'une microcentrale hydroélectrique sur plusieurs forages de différents types. Il présente aussi une simulation d'intégration des petites centrales hydroélectriques sur tous les forages recensés ayant un potentiel énergétique, en faisant apparaître plusieurs paramètres servants à la prise de décision tels que production électrique réelle, revenus issus de l'exploitation de cette énergie, etc.

Première Partie

Synthèse Bibliographique

Chapitre I

Le Continental Intercalaire

Chapitre I – Le Continental Intercalaire

Ce chapitre présente un résumé succinct des connaissances sur le Continental Intercalaire et le contexte saharien en relation avec notre travail.

I.1. Le milieu saharien

Le Sahara algérien occupe une superficie d'environ 2 millions de kilomètres carrés, correspondant à près de 80% de la totalité du territoire. Il s'étend de l'Atlas saharien et des Aurès jusqu'aux frontières Maliennes, Nigériennes et Libyennes. Ce vaste territoire compte neuf wilayas en totalité et huit, partiellement qui regroupent 264 communes pour une population évaluée à 3.5 millions d'habitants.

La grande majorité de ce vaste territoire est occupée par des grandes étendues représentées par des regs, ergs et chotts, qui sont des espaces inaptes à toute culture (Khadraoui, 2006).

I.2. Etude des Systèmes Aquifères du Sahara Septentrional

Les ressources en eau représentent l'une des principales richesses sur lesquelles repose toute action de développement économique et social. Au Sahara les ressources en eau sont surtout et largement dominées par les eaux souterraines. Les ressources en eau sont définies par PNUD-UNESCO (1972) comme suit : « les ressources en eau d'une nappe sont le débit correspondant à une valeur et à un accroissement dans le temps, admissibles, des investissements et des coûts de fonctionnement ».

Le système aquifère du Sahara septentrional (SASS), partagé par l'Algérie, la Libye et la Tunisie, renferme des quantités d'eau très importantes et très peu renouvelables (OSS, 2008). Au cours des trente dernières années, l'exploitation des eaux du SASS par forage est passée de 0,6 à 2,5 milliards de m³/an (OSS, 2008). Il est à noter que l'étude menée par Gonçalvès *et al.* (2013) démontre que l'eau de la nappe albienne peut être considérée comme renouvelable.

Le SASS occupe une superficie de plus d'un million de km² dans la partie occidentale de l'Afrique du Nord : environ 700 000 km² en Algérie, 80 000 km² en Tunisie et 250 000 km² en Libye. Ce sont des dépôts continentaux dans lesquels on distingue en réalité deux aquifères que

l'on va appeler, de bas en haut, le « continental intercalaire », CI, et le « complexe terminal », CT (Bied-Charreton, 2002 ; OSS, 2003a).

La structure horizontale du SASS le présente en trois sous-bassins d'Ouest en Est : le bassin occidental (foggaras au Sud, le Grand Erg occidental et l'Atlas saharien au Nord), le bassin central (dorsale du M'zab et à l'Est par le plateau d'El Hamadah Al Hamra – la partie la plus étendue en superficie et la plus profonde) et le bassin oriental (plateau d'El Hamadah Al Hamra et l'effondrement du graben de Hun). La structure verticale le présente comme une grande entité sédimentaire multicouche formant trois aquifères superposés : la nappe du Continental Intercalaire (CI), la nappe du Turonien (plus localisée), et la nappe du Complexe Terminal (CT) (OSS, 2008).

Les ressources en eau souterraines au Sahara algérien sont essentiellement constituées par les eaux renouvelables localisées dans les inféro-flux du versant sud des Aurès (région Nord de Biskra), du Hoggar Tassili à l'Est et de la région de Béchar – Tindouf à l'Ouest ; ainsi que les eaux non renouvelables représentées par les grands réservoirs des deux bassins sédimentaires : le *Complexe Terminal* et le *Continental Intercalaire* (figure 1).

Il est à remarquer que d'autres ressources en eau situées dans la périphérie du bassin du Sahara Septentrional (Biskra, Laghouat, Béchar, Hoggar et Tassili) sont également importantes et se caractérisent surtout par des nappes renouvelables (nappes phréatiques) et ce, contrairement aux eaux fossiles ou faiblement renouvelables du bas Sahara (Khadraoui, 2006).

Ces formations sont faiblement alimentées : environ 1 Milliard m³/an au total, infiltrés essentiellement aux piedmonts de l'Atlas Saharien en Algérie, ainsi que sur le Dahar et le Djebel Nefoussa en Tunisie et Libye (OSS, 2008) (Annexe 1). Cependant, l'étude menée par Gonçalvès et al. (2013), démontre que l'alimentation de ces formations est très satisfaisante, jusqu'à les décrire comme source renouvelable.

Concernant les précipitations sur le domaine du SASS, par interpolation de la carte pluviométrique en courbes isohyètes établie par Dubief (1953), on peut disposer d'une grille représentant la lame d'eau moyenne (moyenne des 25 années 1926-1950) en tout point du domaine du SASS (annexe 2). Cette carte permet d'estimer la lame d'eau moyenne pondérée sur l'ensemble du bassin du SASS, laquelle s'établit à P = 57 mm/an. Pour une surface totale de 1.095.000 Km², le volume des Ressources Pluviales « moyennes » du SASS s'établit à 62 Milliards de m³/an.

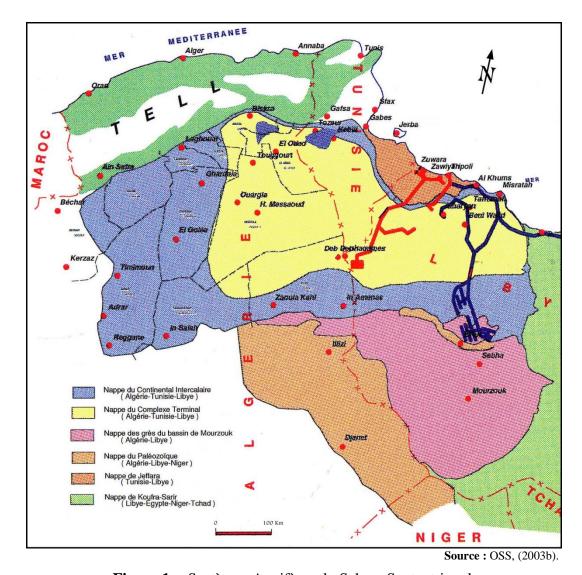
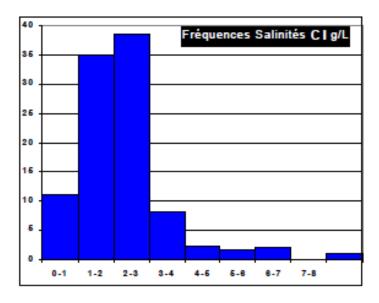



Figure 1 : Systèmes Aquifères du Sahara Septentrional.

Il a été nécessaire de construire, dans le cadre du projet SASS, une carte piézométrique d'ensemble, qui présente un schéma d'écoulements cohérent sur l'ensemble du bassin. Le résultat est une synthèse de toutes les précédentes contributions (annexe 3). Cette carte définit les écoulements de la nappe du Continental Intercalaire à l'état « naturel », peu ou pas influencé par les pompages (OSS, 2003a).

Concernant le problème de salinité des eaux du SASS, la figure 2, élaborée par OSS (2003a), présente la qualité des eaux prélevées en 2000 par tranche de salinité (salinité moyenne des vingt dernières années). Malheureusement, il n'existe pas de mesure systématique de salinité sur tous les puits, et l'échantillon considéré ne porte que sur 23% des débits prélevés en 2000, soit 16 m³/s (7,5 m³/s au CI et 8,5 m³/s au CT).

Source : OSS (2003a).

Figure 2 : Distribution des salinités (g/l) des eaux pompées dans le SASS

Les statistiques disponibles sur l'utilisation de l'eau du SASS (demandes prélèvements) reposent plus sur des estimations que sur des recensements (OSS, 2001). Celles du secteur agricole sont affectées de fortes incertitudes.

Le Sahara algérien présente dans son ensemble un gradient géothermique moyen de l'ordre de 4°C/100 m. Dans la partie septentrionale du Sahara, le gradient géothermique moyen est de 3°C/100 m. Ce dernier semble être dû à l'effet de la profondeur (Ouali *et al.*, 2006).

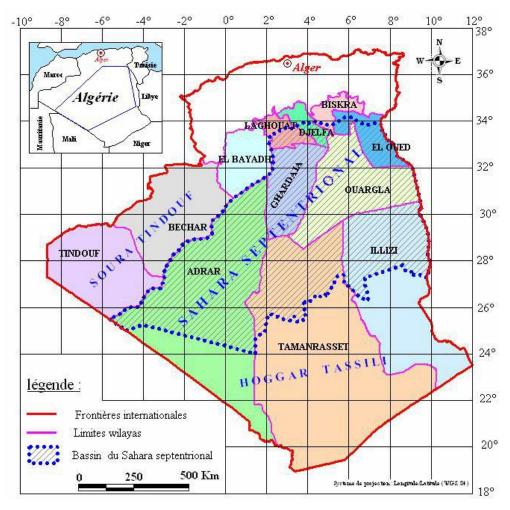
I.3. Etudes réalisées sur les systèmes aquifères du Sahara Septentrional

Il est difficile d'imaginer une gestion rationnelle et durable sans la modification du fonctionnement physique, chimique et biologique de l'environnement. Il est difficile également de gérer une ressource sur un territoire aussi vaste sans un modèle mathématique de gestion.

Les études les plus importantes réalisées dans le domaine de la modélisation des ressources en eau souterraine du Sahara sont les suivantes :

✓ Etude des Ressources en Eau Souterraine du Sahara Septentrional (ERESS) par le PNUD en 1972, actualisée en 1983. Cette étude a servi de base à tous les projets de développement hydro-agricole au Sahara Septentrional. Elle fait ressortir les possibilités de prélèvement dans les différentes régions du Sahara Septentrional jusqu'à l'horizon 2040, à savoir : un

débit fictif continu total de 156 m³/s soit 4.9 milliards de mètres cubes par an pour une réserve en eau évaluée à 60 000 milliards de mètres cubes.


- ✓ Etude du Plan Directeur Général de Développement des Régions Sahariennes (PDGDRS) par le CDARS et le groupe BRLi / BNEDER en 1999. Sur la base des données hydrogéologiques utilisées par l'ERESS et actualisées en 1998 par l'ANRH, un modèle mathématique a été conçu ; il a permis d'élaborer différents plans d'utilisation sur une période de 40 années (simulations fortes à modérées). Chaque simulation fait ressortir les conséquences physiques et socio-économiques sur les ressources en eau.
- ✓ Etude du PDGDRS améliorée sur la base des hypothèses de travail du projet SASS, pour faire ressortir une simulation qui se rapproche beaucoup plus du réel. Les simulations exploratoires sont conduites sur 50 ans, l'état initial de référence étant l'état 2000 reconstitué par le Modèle. Le débit simulé est constant sur toute la période.

I.4. Systèmes Aquifères en Algérie

Il existe, deux systèmes aquifères bien distincts en Algérie. Ils sont séparés par d'épaisses séries argileuses et évaporitiques, de la base du Crétacé supérieur. Il s'agit du, selon Salem (2001), (figure 1) :

- ✓ Continental Intercalaire (CI), aquifère profond composé de sable gréseux ou gréseux argileux.
- ✓ Complexe Terminal, bassin composé de trois nappes superposées.

Ces deux systèmes hydrauliques sont partagés par l'Algérie, la Libye et la Tunisie. Ils renferment des réserves d'eau considérables et font du Sahara algérien une région considérée comme très riche en ressources hydriques (Abdous *et al.*, 2005). La figure 3 présente la localisation du SASS en Algérie.

Source: Bellaoueur et al., (2008).

Figure 3 : Situation géographique du bassin du Sahara septentrional en Algérie.

I.5. Le Continental Intercalaire

I.5.1. Généralités

Le Continental Intercalaire (CI), comme défini dans le domaine de l'hydrogéologie, est un réservoir profond du Sahara Septentrional, constitué de dépôts clastiques (argilo-gréseux) véritablement continentaux constituant un réservoir plus ou moins homogène rempli d'eau douce NESSON C., (1978).

C'est une nappe qui est partagée entre trois pays maghrébins : l'Algérie, la Tunisie et la Libye. La partie algérienne du continental intercalaire couvre 600 000 Km². Elle stocke un volume d'eau considérable, estimé à 35 000 milliards m³ environ. Il s'agit d'une ressource naturelle très peu renouvelable dont l'exploitation est de type minière (Bied-Charreton, 2002).

Selon le CDARS (1999a), la nappe du CI s'étend sur plus de 600 000 km² sur le seul territoire algérien depuis l'accident Sud-atlasique au Nord jusqu'aux affleurements du Tidikelt et du rebord méridional du Tinhert au Sud (figure 5). Elle est limitée à l'Ouest selon un axe Béchar – Reggane. Sa prolongation vers l'Est en Libye sous la Hamada el Hamra jusqu'au Graben de Hon, couvre 250 000 km² supplémentaires.

Figure 4 : Tête d'un forage du Continental Intercalaire à Zaouiet Riab, Djamaa¹.

Selon NESSON C., (1978), la nappe du continental Intercalaire est exploitée dans le Bas-Sahara algérien depuis 1954. Néanmoins, d'après le même auteur, le premier forage a été opéré en 1891 à El Goléa, il obtenait un jaillissement d'eau en provenance de grès attribués à l'Albien. Depuis, la nappe a été dite « albienne » et aujourd'hui encore elle est fréquemment connue sous cette appellation. La figure 4 présente une tête de forage actif.

La dorsale du M'zab divise la nappe du CI en deux bassins aquifères distincts :

- ✓ Un bassin occidental avec une nappe libre à semi captive, dans les zones recouvertes par des dépôts plus récents.
- ✓ Un bassin oriental avec une nappe en charge sous plusieurs centaines de mètres de sédiments.
- ✓ La nappe est artésienne et peut atteindre des pressions très élevées.

10

¹: Photo prise le 06/02/2008.

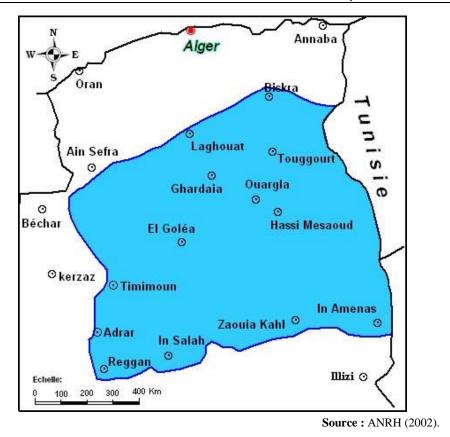


Figure 5 : Répartition du Continental Intercalaire en Algérie.

I.5.2. Particularités de la nappe

Le Continental Intercalaire est l'un des aquifères les plus étendu de la planète avec près de 800 000 km² selon CDARS (1999b). L'une de ses particularités est de constituer une ressource en eau souterraine *fossile*. Le volume d'eau contenu dans l'aquifère est cependant considérable ; la même source indique que son volume peut être évalué à 35 000 Milliards de mètres cubes ce qui signifie qu'il faudrait un débit continu de 1000 m³/s pendant 1000 ans pour le remplir.

Cette ressource en eau s'apparente donc à un gisement minier ou pétrolier dans lequel, les prélèvements se font au détriment du stock.

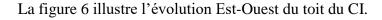
I.5.2.1. Epaisseur du réservoir

A l'exception des bordures Sud (Tidikelt - Tinrhert) et Ouest (Touat), où le réservoir se termine en biseau, l'épaisseur du réservoir utile est importante. Selon le CDARS (1999a), l'épaisseur utile totale du réservoir (épaisseur des dépôts perméables à eau douce) dépasse 250 m dans la majeure partie du bassin.

Par contre, pour les plus fortes épaisseurs, le CDARS (1999b) a précisé qu'elles sont localisées à l'Est d'El Goléa où elles sont comprises entre 750 m et 1000 m au Nord-Ouest du Sahara.

I.5.2.2. Toit du réservoir

Le toit de la nappe du CI varie selon les régions :


- ✓ A l'Ouest (Gourara, Touat), il est en surface et l'aquifère forme une nappe libre captée par les foggaras (Hellal *et al.*, 2004).
- ✓ De part et d'autre du plateau du Tademaït et sur la bordure du Tinrhert, le Continental Intercalaire affleure largement (CDARS, 1999b).
- ✓ Sous le Grand Erg Occidental, le CI n'est plus protégé par les terrains érodés et peu perméables du Crétacé supérieur : il est en contact direct avec les sables dunaires. C'est donc un secteur très particulier puisque des eaux issues de la surface peuvent facilement atteindre le réservoir (CDARS, 1999b).
- ✓ A l'est, le toit plonge progressivement sous d'épais terrains, jusqu'à atteindre son maximum de profondeur dans la dépression d'Oued Righ et sur la bordure des reliefs des Aurès, le toit du réservoir se rencontre à plus de 2000 m de profondeur par rapport au sol. Une même morphologie du substratum est observée dans le sens méridien, qui atteint son maximum au Nord, en bordure de l'Atlas saharien (Hellal *et al.*, 2004 ; CDARS, 1999b).

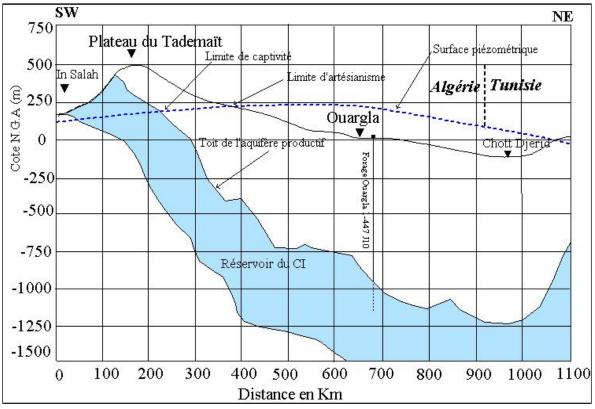

Le tableau 1 précise la position du toit de l'Albien dans quelques régions du Sahara.

Tableau 1 : Situation du réservoir par rapport au sol en mètre (CDARS, 1999b).

Région	Altitude du sol	Cote du toit	Profondeur par rapport au sol
Ziban	150	- 2100	2250
Touggourt	80	- 1350	1450
El Oued	70	- 1600	1700
Ouargla	135	- 850	1000
Ghardaïa	490	- 300	190
Guerrara	320	- 650	970
Zelfana	350	- 250	600
El Goléa	380	- 330	50
Timimoun	340	Affleure	-
Adrar	280	Affleure	-
Ain Salah	270	Affleure	-

D'après la même source, le toit est à grande profondeur puisqu'il se trouve à plus de 800 mètres sous le sol sur 50% de la superficie. La carte montrant l'évolution des différentes profondeurs de la nappe du CI par rapport au sol est présentée en annexe II.

Source: PNUD-UNESCO (1972).

Figure 6 : Coupe hydrogéologique transversale montrant le toit et la surface piézométrique du CI

I.5.2.3. Autres caractéristiques du réservoir

La porosité des grès et des sables du Continental Intercalaire a été évaluée en moyenne à 26% (de 22% à 28%) (Dubost, 2002).

Le tableau 2 résume les principales caractéristiques de la nappe du Continental Intercalaire.

Tableau 2 : Données générales sur la nappe du Continental Intercalaire en Algérie (Hellal *et al.*, 2004).

Etendue (km²)	600 000
Epaisseur totale (m)	50 à 1 000
Profondeur (m)	60 à 2 400
Profondeur au toit (m)	20 à 2 000
Epaisseur de la couche utile productrice (m)	150 à 500
Débit (1/s)	50 à 400
Transmissivité (10 ⁻³ m ² /s)	10 à 30
Coefficient d'emmagasinement (10 ⁻⁴)	6 à 1200
Alimentation moyenne (Hm³/an)	270
Réserve théorique calculée (m³)	50 000 x 10 ⁹
Température (°c)	25 à 70
Salinité des eaux (g/l)	0.5 à 6

I.5.3. Alimentation

L'essentiel des ressources de cet énorme réservoir correspond à de l'eau infiltrée au cours des périodes pluvieuses du quaternaire. De plus, ce réservoir est peu alimenté vu les conditions climatiques actuelles ; il s'agit donc de ressources fossiles.

Actuellement, cette nappe reçoit une faible recharge évaluée, par PNUD-UNESCO (1972), à 8.5 m³/s, s'effectuant comme le montre les conclusions du CDARS (1999a) :

- ✓ de façon directe par infiltration des ruissellements qui se produisent sur les zones périphériques d'affleurement, notamment :
 - dans le piedmont de l'Atlas Saharien (secteur Nord-Ouest),
 - dans le massif du Dahar (Tunisie),
 - sur les rebords Ouest (Touat, Gourara) et Sud (Tidikelt) du plateau du Tademaït, ainsi que sur le rebord Sud du plateau du Tinhert et sa prolongation en Libye jusqu'au Jebel Fezzan,
- ✓ de façon indirecte dans le Grand Erg Occidental à travers les sables dunaires et le Complexe Terminal, ainsi que dans la région où il n'existe pas de séparation imperméable entre les deux réservoirs.

I.5.4. Exutoires

I.5.4.1. Les exutoires naturels

En Algérie, les bordures du Tademaït (Gourara, du Touat et du Tidikelt) constituent une zone d'exutoire naturel importante, qui était sous forme de source dans le passé et dont les foggaras ont pris la relève. Les sebkhas qui sont de vastes étendues humides et salines, constituent des surfaces évaporantes dont le débit total n'est pas négligeable (Hellal *et al.*, 2004; CDARS, 1999a).

La seconde grande zone d'exutoire naturel se situe en Tunisie. Ce sont des remontées verticales par failles dans la zone du Chott Fedjaj et à un écoulement vers la nappe de la Geffara tunisienne par l'intermédiaire des failles d'El Hamma et de Medenine (CDARS, 1999a).

I.5.4.2. Exutoires artificiels

L'exploitation du Continental Intercalaire a commencé depuis de longs siècles, par le système traditionnel des foggaras, introduit sur la bordure du plateau du Tademaït dès le 10ème siècle (CDARS, 1999a). Les foggaras sont de longues galeries drainantes, fonctionnent sous un faible rabattement et utilisant la topographie locale pour permettre l'écoulement libre de l'eau vers des points bas (Hellal *et al.*, 2004).

Le document du CDARS (1999a) a reporté aussi que le débit des foggaras (3.6 m³/s) connu à travers des campagnes de mesures effectuées en 1932-1950 et 1960, est resté invariable jusqu'aux années 1970. Par contre, les premiers forages artésiens ont été d'autre part, réalisés vers la fin du siècle dernier (El Golea, In Salah), mais leur débit est resté faible (0,25 - 0,3 m³/s) jusqu'en 1950. La réalisation des premiers grands forages (Zelfana, Guerrara, Ouargla, Oued Righ) a ensuite rapidement porté le débit jaillissant, à 3 m³/s (en 1970).

I.5.5. Ecoulement

L'écoulement d'ensemble se produit :

- ✓ Dans le sens Nord-Sud, c'est-à-dire du piedmont de l'Atlas vers les zones d'affleurement des rebords du plateau du Tademaït à l'Ouest.
- ✓ Dans le sens Sud-Nord, à l'Est du rebord Sud du plateau du Tinhert vers le Grand Erg Oriental et de la Hamada Al Hamra vers le Djebel Nefusa.

✓ Dans le sens Ouest-Est au Nord-Est, où les eaux en provenance du Sud (Dahar et Grand Erg Oriental) convergent avec celles en provenance du Nord (Atlas) vers l'exutoire tunisien.

La nappe est:

- ✓ Libre sur les zones d'affleurement.
- ✓ Semi-captive ou plus généralement captive non jaillissante sous le Grand Erg Occidental, le M'Zab, le Tademaït, le Grand Sud Tunisien et la Hamada Al Hamra.
- ✓ Fortement artésienne jaillissante (avec des températures élevées) sur tout le domaine
 Oued Righ Souf Djerid Grand Erg Oriental.

I.5.6. Qualité de l'eau

La nappe du Continental Intercalaire est un réservoir à eau douce ; la plus grande partie de l'eau de cette ressource a été remplie pendant les périodes pluvieuses du quaternaire. Les eaux du Continental Intercalaire sont caractérisées par (Khadraoui, 2006) :

- ✓ Une température qui dépasse les 60°C sauf aux endroits où l'aquifère est proche de la surface du sol.
- ✓ Une charge en H₂S et CO₂ qui lui donne un caractère corrosif.
- ✓ Une minéralisation de l'eau qui oscille entre 1 et 2g/l de résidu sec et peut atteindre les 5g/l (Gassi Touil).

Concernant la salinité des eaux du Continental Intercalaire en Algérie, 80% des points d'eau ont une salinité inférieure à 2 g/l; et 92% une salinité inférieure à 3 g/l. Les eaux du bassin du Grand Erg Occidental ont des salinités inférieures à 1 g/l. Ceci n'est pas le cas dans le bassin du Grand Erg Oriental où les salinités oscillent entre 2 et 4 g/l. Les plus fortes valeurs sont observées dans la région d'El Borma (OSS, 2003a).

Selon le CDARS (1999a), la qualité de l'eau du Continental Intercalaire est bonne (minéralisation totale < 1,5 g/l) à très bonne (< 0,5 g/l) sur ses zones d'affleurement et à proximité de celles-ci, à l'exception du secteur d'In Salah où l'on rencontre des eaux plus salées à proximité des zones d'évaporation.

Elle est encore relativement bonne (< 2,5 g/l) à Ghardaïa, Ouargla et El Oued. Selon la même source, la nappe se sale assez rapidement vers le centre du bassin (Hassi-Messaoud, Grand Erg Oriental, avec des minéralisations dépassant 4 à 5 g/l, voire 10 g/l dans le secteur d'El Borma).

Cette augmentation de la salinité va de pair avec l'augmentation de la température, qui dépasse 50°C pour des profondeurs de l'ordre de 1500 m.

I.6. Etat actuel des connaissances de l'exploitation de la nappe du Continental Intercalaire

L'exploitation de l'eau est assurée par l'écoulement naturel des foggaras, l'artésianisme et le pompage des ouvrages non jaillissants (CDARS, 1999a).

L'exploitation des eaux de la nappe du Continental Intercalaire a probablement débuté, il y a plusieurs siècles, par le captage des exutoires naturels (sources) que l'on rencontrait dans les régions du Tidikelt et du Touat-Gourara. L'aménagement progressif de ces sources ou la mise en œuvre de techniques importées (Perse) a donné naissance à un système de captage des eaux très particulier qui est encore en usage aujourd'hui : la foggara (CDARS, 1999b).

Le début du siècle a vu la réalisation des premiers sondages mécaniques dans les régions d'El Goléa (1890) et Zaouia El Khala (1904). Il faut cependant attendre les années 1958-1960 pour qu'à la suite des avancées techniques liées aux reconnaissances pétrolières les parties profondes du réservoir soient facilement accessibles (profondeurs supérieures à 1000 m) et qu'une exploitation plus intensive de la ressource se mette peu à peu en place (CDARS, 1999b).

Le système aquifère saharien en Algérie est exploité par près de 6500 points d'eau, forages et sources. L'évolution du nombre de forages et de leur régime d'exploitation indique des croissances extrêmement fortes au cours des vingt dernières années ; cette exploitation atteint aujourd'hui (2008) 2,5 milliards m³/an (OSS, 2008).

I.7. Affectation de l'eau

I.7.1. Eau à usage agricole

Le secteur agricole est de loin, le plus grand consommateur d'eau de la nappe du Continental Intercalaire. L'exploitation de cette nappe tend donc presque exclusivement vers l'usage agricole. Le potentiel en eau affecté annuellement à l'agriculture est évalué dans Khadraoui (2006) à près de 1.95 milliards de mètres cubes.

Le potentiel de terres irrigables est évalué, selon la même source, à 1,3 millions d'hectares mais les superficies irriguées en Algérie ne sont que de 360 000 hectares environ, ce qui représente 5% de la SAU de tout le pays.

Le secteur agricole, notamment l'agriculture irriguée, connait une efficience relativement faible des utilisations de l'eau (de l'ordre de 40 à 50% fréquemment en irrigation gravitaire) ; les rendements des réseaux de distribution urbains sont rarement supérieurs à 60 à 70% (OSS, 2001).

I.7.2. Eau potable et industrielle

La consommation d'eau potable reste modeste. Elle représente un pourcentage faible (environ 10%) de l'exploitation totale. L'approvisionnement en eau potable et industrielle s'est beaucoup développé durant la décennie (1995-2005), malgré les restrictions dues à la sécheresse (Khadraoui, 2006).

I.8. Les caractéristiques des sites d'exploitation de l'eau du CI

I.8.1. La profondeur des forages

A partir de la carte du toit et de l'altitude du sol on peut établir la carte des isobathes du réservoir qui donne la profondeur du toit par rapport au sol donc à peu de choses près la profondeur des ouvrages à creuser pour exploiter la nappe (CDARS, 1999c).

I.8.2. Les hauteurs de pompage

Les hauteurs de pompage sont présentées sous la forme de carte synthétique élaborée à partir du modèle hydrogéologique du PDGDRS (CDARS, 1999c).

I.8.3. La température

La température de l'eau pompée est présentée sous la forme de carte synthétisant les informations fournies par le modèle. Le gradient de température est décroissant du Nord vers le Sud-est du Sahara. Les températures varient entre 80 °C dans les Ziban et la partie du Nord-Ouest du Souf jusqu'à moins de 25°c dans le M'Zab et dans la wilaya d'Adrar. Les zones actuelles d'artésianisme correspondent à des températures entre 80 et 40 °C (CDARS, 1999c).

I.8.4. La salinité

La connaissance sur la salinité des eaux n'est que partielle en ce qui concerne le Continental Intercalaire. Les concentrations connues sont présentées sur la carte spécifique de la salinité du CI. D'une manière générale, la zone d'artésianisme présente des salinités connues plus fortes que les autres zones. La zone d'Hassi Messaoud enregistre les plus fortes valeurs avec des concentrations supérieures à 5 g/l (CDARS, 1999c).

I.8.5. Le pH

Des valeurs du pH mesuré sur quelques forages albiens varient entre 7,7 et 8,3. Il apparaît que le pH de toutes les eaux issues des forages albiens est voisin de la neutralité avec un caractère plus ou moins alcalin. La plupart des eaux présentent aussi un caractère alcalin bicarbonaté du fait que le pH est souvent inférieur à 8,3 (Bouchemal *et al.*, 2011).

I.8.6. Enjeux et risques liés à l'exploitation du SASS

Selon OSS (2003a), les trois pays concernés par le devenir du système sont condamnés, à court terme, à rechercher ensemble une forme de gestion commune du Bassin Saharien afin de minimiser les nuisances liées à ces risques.

Les simulations effectuées sur le modèle du SASS nous ont montré qu'il est exposé à plusieurs risques ; il faut donc pouvoir les maitriser si nous voulons continuer à exploiter les ressources du CI. Les risques majeurs encourus lors de l'exploitation du SASS, d'après OSS (2003a), sont :

- ✓ la salinisation des nappes par inversion des écoulements entre les nappes et les chotts (en Algérie et Tunisie) ou entre les nappes et la mer (en Libye) ;
- ✓ la chute du niveau des nappes dans les forages, entraînant des coûts de pompages excessifs ;
- ✓ le tarissement d'exutoires naturels, comme le débit des foggaras en Algérie, l'artésianisme dans la région des chotts ou le débit de l'exutoire Tunisien, qui alimente des nappes côtières dans la Djeffara, ou le débit de Ain Tawergha en Libye.

I.9. Réflexion sur la simulation exploratoire du SASS (2000-2050)

Les simulations exploratoires sont conduites sur 50 ans. L'état initial de référence est l'état 2000 reconstitué par le Modèle. Le débit simulé est constant sur toute la période. A chacun des scénarios sont associés plusieurs résultats, notamment les rabattements 2000-2050, les

profondeurs du Niveau par rapport au sol, le bilan 2050 et débit calculé aux principaux exutoires et impact sur les pays voisins (OSS, 2003a).

La connaissance approfondie de l'hydrogéologie du SASS, la constitution d'une base de données opérationnelles à partir de l'existant et de nouvelles données, la fabrication d'un modèle mathématique performant et la réalisation de simulations selon des hypothèses très diverses ont permis de montrer (Bied-Charreton, 2002) :

- ✓ Que la simple poursuite des rythmes de prélèvements actuels constituait un danger potentiel majeur pour l'environnement et la nappe.
- ✓ Que les résultats des simulations basées sur des hypothèses fortes aboutissaient à une aggravation de ces risques.
- ✓ Que l'utilisation de micro modèles ait mis en évidence qu'il existait une possibilité de tripler les prélèvements actuels (passer de 2,2 Milliards de m³/s en 2000 à 7,8 Milliards en 2030). Cela représente huit fois les ressources renouvelables (estimées à 1 Milliards de m³/an) et donc à un prélèvement important sur les réserves. D'où la nécessité de bien prévoir les rabattements, les conséquences sur l'environnement et sur les coûts de pompage.

Chapitre II

L'hydroélectricité

Chapitre II – L'hydroélectricité

L'agriculture est tributaire de la disponibilité énergétique. Selon ADEME (2012), l'étude de la dépendance des exploitations agricoles à l'énergie permet de mesurer leur sensibilité et leur fragilité en cas de crise énergétique. Elle permet aussi d'évaluer comment la production d'énergies renouvelables sur ces mêmes exploitations peut réduire cette dépendance.

II.1. L'énergie

Du point de vue physique, l'énergie, mesurée en joules, est une mesure de la capacité d'un système à modifier un état, à produire un travail entraînant un mouvement, un rayonnement électromagnétique ou de la chaleur.

L'énergie peut se transmettre d'un système à un autre. La caractéristique la plus remarquable de l'énergie est qu'elle se conserve toujours. Lorsque l'énergie change de forme, le bilan est toujours exactement équilibré. C'est cette propriété de conservation qui nous permet de mesurer, à l'aide d'une seule et même unité, les diverses formes de l'énergie. Les échanges d'énergie sont caractérisés, non seulement par la quantité d'énergie transférée ou transformée, mais aussi par la durée du processus.

Les différentes formes d'énergies sont : l'énergie mécanique, l'énergie thermique, l'énergie chimique, l'énergie rayonnante, l'énergie nucléaire et l'énergie électrique (CEA, 2002). Nous nous contenterons d'exposer un bref aperçu de quelques aspects de l'énergie électrique.

II.1.1. L'énergie électrique

L'énergie électrique représente de l'énergie transférée d'un système à un autre (ou stockée dans le cas de l'énergie électrostatique) grâce à l'électricité, par un mouvement de charges électriques. L'électricité est un vecteur énergétique, qui n'existe pas dans la nature et doit être produite à partir d'une source d'énergie primaire. Le terme est toutefois communément utilisé par commodité de langage.

La production mondiale d'électricité était en 2006 de l'ordre de 19 000 TWh (Odru, 2010). En 2017, la production passe à plus de 25 600 TWh représentant 13.8 GTEP (IEA, 2019). Ses applications sont extrêmement diverses, tant chez les particuliers que dans l'industrie et les services (figure 7). Elle est une des composantes indispensables de l'économie, de la croissance, et du niveau de vie.

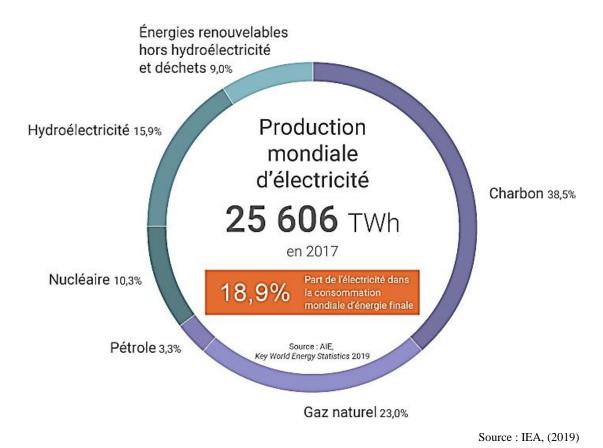


Figure 7 : Production mondiale de l'électricité en 2017

En 2006, 81% de la production mondiale d'électricité provenait d'une source de chaleur faisant appel à des combustibles fossiles ou nucléaires (Odru, 2010). La part de l'hydroélectricité ainsi que les énergies renouvelables est en progression, réduisant ainsi la part des combustibles fossiles et nucléaires à moins de 76% (IEA, 2019). L'électricité produite à partir de charbon, notamment en Chine et aux Etats-Unis, est une des causes de l'accroissement des rejets de gaz à effet de serre.

Le tableau 3 présente les différentes sources d'énergie primaires de l'électricité.

Types d'énergie	Types de ressources	Part de la production mondiale		Rendement centrales
		En 2006	En 2017	en 2006
Fossiles + nucléaires	Charbon	40%	38.5%	40% à 60%
	Fuel	6%	3.3%	
	Gaz	20%	23%	35%
	Nucléaire	15%	10.3%	30%
Renouvelables	Hydraulique	15.5%	15.9%	
	Eolien, solaire, marin	0.6%	00/	
	Autres	2.9%	9%	

Tableau 3: Energie primaire de l'électricité (Odru, 2010; IEA, 2019).

La deuxième ressource primaire de production d'électricité, provient de l'exploitation des énergies renouvelables (25%). La principale d'entre elles, exploitée depuis les origines, est l'hydroélectricité, qui intervient pour une part importante dans le bilan mondial (15.9%). Hors production à partir de biomasse, les autres sources d'énergie renouvelables, éolien, solaire, énergie des mers, bien qu'en accroissement très rapide notamment dans les pays développés, restent globalement très marginales (Odru, 2010 ; IEA, 2019).

II.1.2. Le stockage de l'énergie

Dans le monde, l'essentiel des grandes capacités de stockage d'énergie est de type hydraulique gravitaire à savoir le stockage saisonnier dans de grands lacs et par des STEP, mais cela n'est possible qu'à condition de disposer de sites adaptés, le transport de l'énergie vers les lieux de consommation étant souvent réalisé sur de grandes distances et très couteux (Odru, 2010).

L'énergie électrique est une forme particulière de l'énergie. N'étant pas stockable directement, elle est convertie en d'autres formes d'énergies elle-même stockable. Pour la restituer, il suffit de la transformer une seconde fois pour la ramener sous sa forme initiale.

Quelques exemples de transformations technologiquement disponibles pour le stockage d'électricité sont présentés dans le tableau 4.

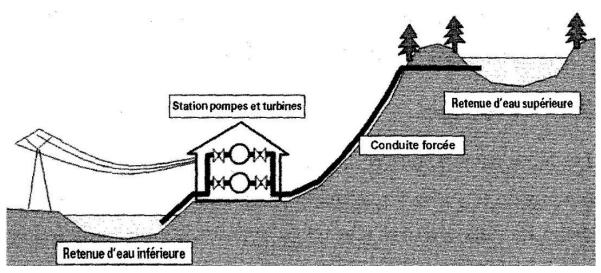
Electricité							
Electrochimie	Inertie	Gravitaire	Air comprimé	Hydrogène			
Réaction électrochimique	Moteur entrainant un disque	Pompage	Compresseur	Electrolyse de l'eau			
Potentiel électrochimique	Energie cinétique de rotation	Energie potentielle gravitaire	Air comprimé	Hydrogène			
Réaction électrochimique inverse	Alternateur récupérant l'énergie cinétique	Turbinage	Turbinage	Pile à combustible			

Tableau 4 : Exemple de stockage d'électricité (Odru, 2010).

II.1.3. Les différents modes de stockage

II.1.3.1. Le stockage électrochimique

Le stockage sous forme de batteries électrochimique est la forme de stockage d'électricité la plus répandue. Les batteries au plomb restent la solution de référence, mais de nombreux progrès ont été accomplis avec l'apparition de nouveaux genres de batteries (Ni-MH, Ni-Cd, Li-ion, Sodium-Soufre, *redox flow*). La technologie émergente des supercondensateurs offre des puissances importantes mais des capacités de stockage plus limitées que les batteries, et donc des temps de réponse courts (Odru, 2010).


II.1.3.2. Le stockage mécanique

Le stockage inertiel fait appel à un volant d'inertie tournant à grande vitesse, pouvant atteindre 100000 tr/min.

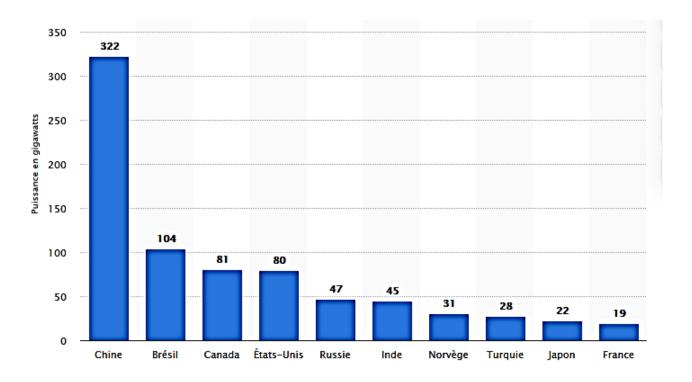
Le stockage hydropneumatiques (HPES, Hydro Pnuematic Energy Storage) se base sur l'extrapolation de l'énergie potentielle gravitaire de l'eau en remplaçant la hauteur d'eau par la pression, sachant que la pression atmosphérique est équivalente à une hauteur de 10 mètres (par exemple, au lieu de pomper de l'eau à une hauteur de 300 mètres, on propose de la soumettre à une pression de 30 bars) (Odru, 2010).

Le stockage gravitaire (STEP, Station de Transfert d'Energie par Pompage) consiste à pomper de l'eau en phase de stockage vers une retenue située en altitude, puis de récupérer l'énergie gravitaire hydraulique disponible à travers une turbine couplée à un générateur situé en contrebas (Odru, 2010).

Les STEP représentent de très loin les capacités de stockage stationnaire mondiales les plus massives tant en énergie stockée qu'en puissance instantanée disponible. Elles sont conçues pour servir d'accumulation réversible d'énergie (figure 8).

Source: Odru, (2010).

Figure 8 : Principe du stockage gravitaire hydraulique


Deux retenues d'eau, l'une inférieure, l'autre supérieure, sont séparées et reliées par une conduite et une station de pompage-turbinage dans la partie basse. Lorsque l'électricité produite est en excès par rapport à la demande en énergie et que les tarifs le permettent, l'eau du bassin inférieur est pompée vers le bassin supérieur, lui conférant ainsi de l'énergie potentielle stockée (Odru, 2010).

II.1.3.3. Le stockage thermique

Le stockage de chaleur consiste à chauffer un liquide ou un solide en phase de stockage et à récupérer cette chaleur en phase de déstockage. Le stockage peut aussi s'effectuer via les changements de phase des matériaux, qui permettent de disposer de grandes quantités de chaleur à une température fixe (Odru, 2010).

II.2. L'hydroélectricité dans le monde et en Algérie

L'hydroélectricité est l'électricité produite par l'eau à travers les barrages. Sa production est pour l'essentiel consommée localement. Première source d'énergie renouvelable au monde, elle a fourni à elle seule 16 % de l'électricité mondiale en 2017, constituant la troisième source de production électrique mondiale (BP, 2018). L'hydroélectricité est l'une des formes d'énergie renouvelable ayant atteint le plus de maturité dans le monde. La production mondiale d'énergie hydroélectrique est présentée sur la figure 9.

Source : GEA (2018).

Figure 9 : Capacité hydroélectrique dans le monde en 2018

En Algérie, la part de la capacité hydroélectrique dans le parc de production d'électricité est de 5% seulement. Cette faible puissance est due au nombre insuffisant de sites d'eau (barrages) et à la non-utilisation de tous les sites hydrauliques existants (Hamiche *et al.*, 2015).

L'Algérie a abandonné l'hydroélectricité aux environs de 2014. La décision de renoncer à produire de l'électricité à partir des barrages a été motivée par le fait que le niveau de production des centrales hydroélectriques reste « insignifiant » contribuant très peu au bilan énergétique de l'Algérie (Ferhat, 2014).

La production de la filière hydraulique ne représente que 389,4 GWh des 28950 GWh produits par la filiale de production d'électricité de Sonelgaz. L'essentiel de la production électrique en 2014, soit 18723 GWh est assurée par le gaz. Seuls deux barrages produisaient de l'électricité en Algérie. Il s'agit du Barrage d'Ighil Emda à Kherrata (Béjaïa) et du Barrage Erraguen à Jijel. Le ministère des Ressources en eau a récupéré ces deux barrages afin de les consacrer à l'alimentation en eau et a l'irrigation agricole (Ferhat, 2014).

II.3. Les technologies d'énergies propres

Des technologies autrefois considérées comme étranges ou exotiques sont maintenant devenues des réalités commerciales qui représentent des alternatives rentables aux systèmes conventionnels à combustibles fossiles, qu'accompagnent des problèmes d'émissions de gaz à effet de serre, de coûts d'opération élevés et de pollution locale (MRNC, 2004a).

II.4. Les barrages hydroélectriques

Des turbines exploitent le débit et la pression liés à l'accumulation d'eau pour produire de l'énergie électrique. Selon Magdelaine (2017), les barrages hydroélectriques sont principalement utilisés lors des pics de charge, parce qu'ils peuvent démarrer ou s'arrêter presque instantanément et parce que la quantité d'énergie que représente la chute d'eau est limitée.

Une étude de la commission mondiale sur les barrages, publiée en 2000, conclut que les grands barrages ont à la fois de effets bénéfiques et négatifs. Selon la même commission, les grands barrages ne sont plus une solution privilégiée pour l'avenir; les minicentrales d'énergie hydrauliques se sont avérées moins chères à construire et d'un coût de fonctionnement plus économique que prévu. De plus, elles ont des impacts minimes sur l'environnement (Magdelaine, 2017).

Les centrales « au fil de l'eau », sont des barrages qui utilisent une partie du flux des rivières pour produire de l'énergie électrique. Il existe des centrales au fil de l'eau à axe vertical (rivières à pente forte) et à axe horizontal (rivières à fort débit et à petite chute).

II.5. Les petites centrales hydroélectriques

Les petites centrales hydroélectriques sont un moyen fiable pour la conversion de l'énergie potentielle et cinétique de l'eau en mouvement en électricité grâce au groupe turbine-génératrice.

Utilisées depuis plus de cent ans, les petites centrales hydroélectriques représentent une technologie fiable et bien maîtrisée. Cette technologie peut fournir de l'énergie électrique à un réseau central, à un réseau isolé ou à une charge hors réseau (MRNC, 2004a).

Il n'y a pas de consensus international sur la définition de la petite hydroélectricité. Partout dans le monde, la tendance générale est de définir les petites centrales hydroélectriques par la puissance de sortie. Différents pays suivent des normes différentes en gardant la limite supérieure allant de 5 à 50 MW (Sachdev *et al.*, 2015).

Dans plusieurs régions du monde, les opportunités en développement de grands projets hydroélectriques diminuent et des sites plus petits sont considérés en tant qu'alternatives procurant ainsi un potentiel de croissance significatif du marché des petites centrales hydroélectriques (MRNC, 2004a).

II.5.1. Tailles des petites centrales hydroélectriques

Il n'y a pas de différence majeure dans le fonctionnement d'une petite centrale par rapport à une grande. Les appellations des différentes centrales hydroélectriques se font selon les puissances fournies par ces dernières. Le terme de « petite centrale hydroélectrique » peut couvrir des capacités nominales de quelques kilowatts à 50 mégawatts ou plus (MRNC, 2004a).

Schwartz *et al.*, (2005) ont traité le domaine de « la petite hydraulique » comme source d'énergie verte, tout en discutant les différences fondamentales entre les petites centrales hydroélectriques à grande échelle.

Reddy *et al.*, (2006) ont souligné que le projet hydroélectrique de faible capacité est considéré comme une source d'énergie non conventionnelle et renouvelable. Quantitativement, un petit volume d'eau avec de petites pressions peut être facilement exploité pour produire de l'électricité à l'aide d'une micro-turbine à eau et d'un générateur.

Dans la majorité des pays, il s'applique en général à des projets de 1 à 50 MW. Quelquefois, les projets de la tranche de 100 kW à 1 MW sont appelés « minicentrales » ou « microcentrales » (Le nir *et al.*, 1982 ; GRET J.M., 2006).

II.5.2. Différents composants d'une petite centrale hydroélectrique

Les principaux composants électriques et mécaniques d'une petite centrale sont la turbine et la génératrice. Les turbines utilisées dans les petites centrales sont des versions réduites de celles qui équipent les grandes centrales classiques.

Les autres composants mécaniques et électriques les plus importants d'une petite centrale hydroélectrique, peuvent être résumés dans ce qui suit (MRNC, 2004a) :

- ✓ Le multiplicateur de vitesse pour faire tourner la génératrice à sa vitesse de rotation idéale à partir de la vitesse de rotation de la turbine (au besoin).
- ✓ Les vannes d'isolement et de dérivation.
- ✓ Le système de contrôle hydraulique et électrique.
- ✓ Les transformateurs auxiliaires et de transport de l'énergie.
- ✓ Le système de télécommunication et d'alarme.

II.5.3. Grandeurs caractéristiques des petites centrales hydroélectriques

Quatre grandeurs caractéristiques permettent d'évaluer l'importance d'un aménagement hydroélectrique (MRNC, 2006) :

- ✓ **Débit d'équipement :** est le débit maximum susceptible d'être turbiné par la centrale.
- ✓ **Hauteur de chute :** est la différence d'altitude entre le niveau de l'eau à la prise d'eau et le niveau de l'eau à la turbine.
- ✓ **Puissance de l'aménagement :** est une fonction combinée du débit d'équipement et de la hauteur de la chute.
- ✓ Energie électrique produite : indique la capacité de production d'un aménagement hydroélectrique en une durée déterminée.

II.5.4. Développement de projet de petite centrale hydroélectrique

La réalisation d'un projet de petite centrale hydroélectrique prend du temps ; deux à cinq ans sont nécessaires depuis la conception jusqu'à la mise en service.

La viabilité technique et financière d'un projet de petite centrale hydroélectrique dépend beaucoup du site. La puissance est fonction du débit d'eau disponible et de la hauteur de chute. La quantité d'énergie produite dépend de la quantité d'eau disponible. La rentabilité économique d'un site est liée à la puissance et à l'énergie produite, de la possibilité ou non de vente de l'énergie et du prix payé pour cette énergie (MRNC, 2004a).

II.5.4.1. Facteur de viabilité

Une analyse attentive des facteurs clés qui permettent de réaliser un projet d'énergies propres financièrement viable peut épargner beaucoup de temps et d'argent. Certains des facteurs de viabilité reliés aux projets d'énergies propres sont listés ci-dessous (MRNC, 2004b) :

- ✓ Disponibilité de la ressource énergétique sur le site.
- ✓ Rendement des équipements (courbe de puissance).
- ✓ Coûts d'investissement du projet.
- ✓ Frais annuels et périodiques.
- ✓ Financement et taxes sur les équipements et impôts sur les revenus.
- ✓ Impact environnemental de l'énergie remplacée.
- ✓ Existence de mesures incitatives et/ou subventions.
- ✓ Choix des critères de « rentabilité » établit par les décideurs (prix de revient du kWh produit, etc.).

II.5.4.2. Analyse de projet

L'étude et l'installation d'un projet d'hydroélectricité passe par 3 phases : la phase de planification (dépistage des risques), la phase de construction (site, infrastructures, transport) et la phase d'opération (suivi, surveillance, mesure, etc.).

L'analyse de développement de projet d'hydroélectricité est une phase très importante. Elle permet d'avoir une idée précise sur la faisabilité réelle d'un tel projet. Le déroulement de cette analyse est décrit dans ce qui suit (MRNC, 2004a).

a. Analyse préfaisabilité

Une évaluation rapide et peu coûteuse détermine si le projet proposé a ou non une bonne chance de satisfaire les exigences du promoteur en termes de profitabilité et de rentabilité, et donc s'il mérite qu'on y investisse le temps et les ressources nécessaires pour passer à l'analyse de faisabilité.

Cette analyse est caractérisée par l'utilisation des renseignements disponibles sur le site et la ressource, une estimation grossière des coûts, des calculs simples et l'application judicieuse d'évaluations basées sur des méthodes empiriques généralement utilisées dans l'industrie. Pour les projets plus importants, tels que les projets hydroélectriques, une visite du site est requise. Les visites de site ne sont pas forcément nécessaires pour les petits projets impliquant de petits investissements.

b. Analyse de faisabilité

Ce type d'analyse va plus en profondeur dans la caractérisation des éléments du projet et doit fournir plus de renseignements à propos des caractéristiques physiques, de la viabilité financière, des impacts sociaux, environnementaux ou autres impacts du projet. Ainsi, le promoteur peut prendre une décision plus éclairée quant à la poursuite du projet. L'analyse de faisabilité est caractérisée par la collecte de données précises à propos du site, de la ressource, des coûts et des équipements. Cela implique généralement des visites de site, la mesure de la ressource, des audits énergétiques, des simulations informatiques plus détaillées et la sollicitation d'information auprès des fournisseurs d'équipements à propos des coûts des équipements.

c. Ingénierie et développement

Elle est basée sur l'analyse de faisabilité. L'ingénierie inclut la conception et la planification des composantes physiques du projet. Le développement implique la planification, la définition et la négociation des aspects financiers, légaux, contractuels et des autres composantes non physiques du projet. Malgré des investissements significatifs dans l'ingénierie et le développement, le projet peut être arrêté avant la phase de construction parce que le financement ne peut être ficelé, les autorisations environnementales ne peuvent être obtenues, les analyses de préfaisabilité et faisabilité ont « oubliées ou sous estimées » certains éléments de coûts importants, ou pour toutes autres raisons.

d. Construction et mise en service

À cette étape, le projet est construit et mis en service. Certaines activités de construction peuvent débuter avant la fin de l'étape d'ingénierie et de développement et les deux étapes, conduites en parallèle.

II.6. Qualité de l'électricité

La qualité de l'électricité doit être maintenue à un niveau élevé. Il s'agit de maintenir les caractéristiques du courant électrique en amplitude de tension et fréquence dans un réseau soumis aux évènements aléatoires liés tant à la consommation (démarrage d'unités importantes) qu'à la production (fluctuation des énergies renouvelables).

L'amélioration de la qualité peut être obtenue notamment par des injections de puissance rapides. Les dispositifs les plus appropriés sont des inductances supraconductrices, des volants d'inertie, des supercondensateurs ou encore certaines batteries électrochimiques conçues pour des charges ou décharges rapides (Odru, 2010).

Deuxième Partie

Enquête et essais
d'intégration de
microcentrale
hydroélectrique

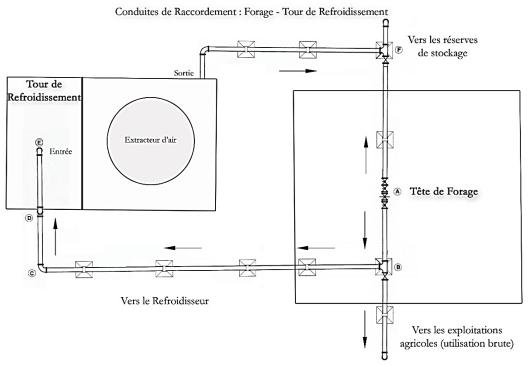
Chapitre III

Enquête sur le Continental Intercalaire et analyse de son potentiel énergétique

Chapitre III – Enquête sur le Continental Intercalaire et analyse de son potentiel énergétique

Dans ce chapitre, nous avons présenté les principales caractéristiques des forages albiens, ainsi que l'essentiel des données recueillies sur le terrain en vue de l'étude du potentiel énergétique du Continentale Intercalaire. L'analyse des données ainsi que l'interprétation des différents résultats sont aussi exposées dans ce chapitre.

III.1. Le forage albien et ses caractéristiques


III.1.1. Généralités

La figure 10 présente une vue en plan d'un forage albien standard. La tête de forage est la partie clés du forage. Elle englobe tous les éléments nécessaires à l'extraction de l'eau tout en préservant la sécurité du lieu et des personnes en charge de contrôler le bon fonctionnement de celui-ci (Vanne By-pass, vannes standards, sécurité anti coup de bélier, etc.).

L'eau qui sort du forage a trois destinations possibles :

- ✓ Vers les réservoirs de stockage pour l'approvisionnement en eau potable.
- ✓ Vers les exploitations agricoles pour l'irrigation.
- ✓ Passage par un refroidisseur afin d'abaisser la température de l'eau pour une utilisation directe.

La tour de refroidissement fait environ 16 m de hauteur pour la plupart des tours et comprend un ventilateur d'extraction d'air chaud de 5 m de diamètre tournant grâce à un moteur de 30 kW de puissance pour presque tous les forages munis de trous de refroidissement.

Source: Etsouri (2008).

Figure 10 : Schéma général d'un forage avec tour de refroidissement – vue de dessus.

III.1.2. Potentialités énergétiques

III.1.2.1. Débit et pression

La nappe du Continental Intercalaire a un potentiel énergétique élevé. Deux paramètres sont suffisants pour obtenir le potentiel énergétique exploitable traduit par la puissance utile d'entrainement d'une pompe : Le débit exploitable ou turbinable et la pression.

Le débit turbinable est la quantité d'eau arrivant à l'entrée du groupe turbogénérateur. Concrètement, ce débit est égal au débit exploitable du forage lui-même, qui est mesuré sur terrain par les services et organismes concernés.

Cette quantité, provenant du forage, est partagée, dans la plupart des cas entre le refroidisseur (irrigation et dispositif d'approvisionnement en eau potable) et le système de chauffage des serres pendant les périodes froides.

La pression utile est la pression obtenue à la sortie du forage, au-dessus du refroidisseur (on considère que tous les forages sont dotés d'un refroidisseur), en prenant en considération les pertes de charge. Ceci n'est valable que pour les forages ayant une pression mesurée sur terrain.

Il faut savoir que, dans la majorité des cas, la pression n'est pas mesurée car elle n'est pas considérée comme une donnée potentiellement exploitable ; elle fait l'objet d'une estimation par croisement de plusieurs autres données.

III.1.2.2. Le potentiel exploitable P_{exp}

Une fois les valeurs du débit et de la pression obtenues (mesurées sur terrain ou obtenues par estimation ou calcul), il est possible de déterminer le potentiel exploitable par la relation issue de l'équation fondamentale de la puissance dont les détails sont présentés ci-dessous.

$$P_{uissance} = \frac{Travail}{Temps} = \frac{W}{t}$$

$$= \frac{f \cdot h}{t} = \frac{P_r \cdot S \cdot h}{t} = P_r \cdot \frac{V}{t} = P_r \cdot Q_t$$

Avec:

W: Travail effectué en joule (J). P_r : Pression (Pa). P_{exp} : Potentiel puissance (W). V: Volume (m³).

t: Temps en seconde (s). Q_t : Débit turbinable (m³/s). f: Force exercée en Newton (N). h: Distance en mètre (m).

Le "potentiel exploitable" ou la puissance $P_{uissance}$ développée par la force de pression «f(N) » déplaçant le volume «V » de la distance «h » durant le temps «t » s'exprime par :

$$P_{\rm exp} = p_r \cdot Q_t$$

Avec:

 P_{exp} : puissance en W. P_r : pression en Pascal.

 Q_t est le débit turbinable (m³/s)

Afin d'éviter les erreurs lors de la conversion des unités, nous utilisons la formule suivante :

$$P_{\rm exp} = \frac{p_r \cdot Q_t}{600}$$

P_{exp}: puissance en kW. P_r: pression en bar. Q_t est le débit (l/min)

Cette équation est retenue pour les calculs numériques.

III.2. Dépouillement de l'enquête

L'enquête a été menée sur les forages du continental Intercalaire dans le territoire algérien. Les données ont été récupérées au niveau de plusieurs organismes et leurs antennes. Nous pouvons citer : ANRH-Alger, ANRH-Ouargla, ANRH-Touggourt, CRSTRA, ONID-Alger, ONID-Ouargla, ONID-Touggourt (Djamaa), ABHS-Ouargla, CASTORO société de forage (à travers un ingénieur qui travaille avec eux).

Nous avons pu synthétiser toutes ces données issues des différents organismes consultés. Les paramètres utilisés sont :

- ✓ Paramètres d'identification et de localisation : le nom du forage et le numéro de référence qui changent en fonction des organismes. Nous avons essayé d'homogénéiser les noms des forages vus que la différence n'est pas très grande. Comprend aussi la Wilaya, la région et la commune de localisation du forage.
- ✓ Paramètres de type de forage et de réalisation : le type d'aquifère et de nappe, la date de fin de réalisation et état actuel du forage.
- ✓ Paramètres de géolocalisation : les coordonnées géographiques du forage (altitude, latitude et longitude).
- ✓ **Paramètres énergétiques :** le débit exploitable (en l/s et en m³/an), la pression et la température du forage.
- ✓ Autres paramètres : le taux de résidus secs ainsi que l'usage de l'eau issue du forage.

L'objectif principal de cette enquête consiste à recueillir le maximum de données sur les forages du Continental Intercalaire. Nous avons insisté sur les paramètres pouvant donner une idée du potentiel énergétique notamment la pression, le débit et la température ; les questions posées étaient donc orientées dans ce sens, sans pour autant négliger les autres paramètres.

Parmi les forages que nous avons pu recenser, un nombre important n'a pas de données de géolocalisation ni de de données énergétiques ; ceci nous a amené à les écarter de notre étude. Les autres forages ont été pris en considération.

Nous avons constaté, après croisement de toutes les données et en les regroupant dans le tableau de l'annexe 4, qu'il y a un manque d'information flagrant sur les forages. Aussi, les forages de la wilaya de Ghardaïa n'ont pas été comptabilisés vu qu'aucune information ne nous a été donnée dans ce contexte, même après avoir fait les demandes nécessaires auprès de l'ANRH-

Alger et l'ANRH-Ouargla, et fourni les documents expliquant le cadre universitaire et scientifique de cette étude.

Plusieurs problèmes peuvent être à l'origine de ce manque, nous pouvons énumérer quelquesuns :

- ✓ Le facteur humain : oubli, fatigue, charge de travail, etc.
- ✓ Les moyens mis à disposition : manque de moyens pour la mesure, etc.
- ✓ Accessibilité : distance trop grande entre les forages et accès difficile aux forages.
- ✓ Etat actuel : les forages sont souvent anciens, bouchés, non exploités, donc le repérage est difficile.
- ✓ Mise à jour trop lente : les inventaires se font chaque dizaine d'année, ce qui est trop lent pour des régions à développement agricole rapide.

Le paramètre « débit » n'est représenté que par 54% de la totalité des forages et le paramètre « température » par uniquement 6% des forages pour un total de 295 forages. Le paramètre « pression » n'est représenté que par 28% des forages. La figure 11 présente le nombre de forage trouvé par paramètre.

Cependant, et comme ces trois paramètres représentent la composante énergétique des forages, nous ne devons prendre en considération que les forages en exploitation. Ces pourcentages vont donc devenir 77% pour le débit, 37% pour la pression et 10% pour la température, pour un total de 192 forages actuellement en exploitation (figure 12).

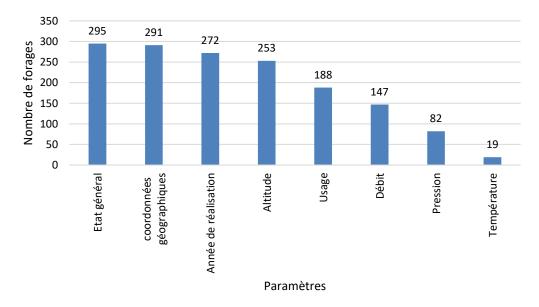


Figure 11 : Effectif des forages par paramètre.

Les forages n'ayant pas de coordonnées géographiques ont été enlevés. Nous avons gardé 4 forages non géolocalisés uniquement sur le tableau car ils contiennent des données que nous n'aurions pu négliger.

Il est utile de mentionner que nous avons mené une enquête auprès des organismes concernés par le système Aquifère du Sahara Septentrional. Les données que nous avons pu obtenir ont été classées et les paramètres que nous avons jugés utiles ont fait l'objet d'analyse.

III.3. Difficultés rencontrées

Des difficultés ont été rencontrées à plusieurs étapes de cette étude. C'est autour de la collecte des données que la difficulté majeure a été rencontrée.

Effectivement, mis à part le manque flagrant de documentation sur le thème, nous avons eu des difficultés à rassembler les informations existantes du fait de la grande distance qui sépare les différents organismes. Le déplacement vers ses organismes nécessitait une préparation psychologique et financière.

Etant donné que le sujet n'a jamais fait l'objet d'une étude approfondie au sein de ces organismes, les données y référant sont presque inexistantes, et le peu que nous avons pu trouver, il fallait le chercher minutieusement.

D'une manière générale, l'information était partagée entre presque tous les organismes (ONID, CRSTRA, ANRH, ABHS). Chaque organisme avait sa propre codification et appellation, dont il fallait homogénéiser; une synchronisation s'imposait.

III.4. Analyse des résultats de l'enquête sur les forages recensés

Le tableau présenté en annexe 4 expose les 295 forages recensés ayant des données relativement exploitables. Les autres forages n'ont pas été reportés par manque d'informations fiables.

III.4.1. Analyse du volet « état des forages »

Après regroupement des données relatives à l'état général des forages, nous avons pu les classer en 2 catégories : « forages exploités » et « forages non fonctionnels », avec respectivement 65% et 35% de l'effectif total. Les forages non fonctionnels représentent les

forages non exploités, abandonnés, bouchés, à l'arrêt, fermés ou non trouvés réellement sur terrain (figure 12).

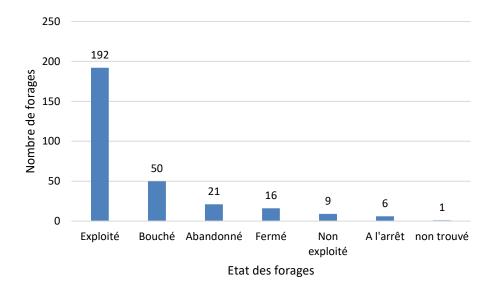


Figure 12 : Distribution des forages selon leur état.

Nous n'allons concentrer notre étude, par conséquent, que sur les forages actuellement exploités et qui sont au nombre de 192 forages.

Sur ces 192 forages, seulement 34% (66 forages) présentent une information assez complète sur le potentiel énergétique, c'est-à-dire des données de débit et de pression du même forage. Les autres forages (66% restant) ont, soit le débit, soit la pression et non pas les deux.

Nous avons essayé de chercher un lien entre « l'état des forages » et « la date de leur réalisation » pour tous les forages. Nous avons pu constater, après analyse statistique, qu'il n'y a aucune corrélation entre ces deux variables (annexe 5).

Effectivement, plusieurs de ces forages ont plus de 40 ans et sont toujours en exploitations. Par contre il existe des forages très récents et sont non fonctionnel. Les raisons de ce phénomène ne sont donc pas d'ordre naturel mais suivent probablement une logique politique (des décisions en relation avec la politique agricole) ou d'autres mesures liées à l'aspect socioéconomique (forages stratégiques, forages temporaires, changement de vocations des terres avoisinantes, délocalisation des gens, remise en cause de décisions agricoles, etc.).

III.4.2. Analyse du volet « Paramètres énergétiques »

Nous avons constaté que 76% des forages actuellement en exploitation ont les données de débit renseignées, contre seulement 37% des forages ayant les données sur la pression. La température, quant à elle, n'est renseignée que par 10% des forages actuellement en exploitation (figure 13).

Comme les données relatives à la température sont très rares, nous nous sommes focalisés sur le débit et la pression correspondant aux données pouvant intervenir lors du calcul ou de l'estimation de l'énergie hydraulique des forages du CI.

Dans ce contexte, le nombre de forages ayant les deux données, de pression et de débit, sont de 66 correspondants à 34% des forages en exploitation et donc 22% de la totalité des forages recensés, ce qui reste faible.

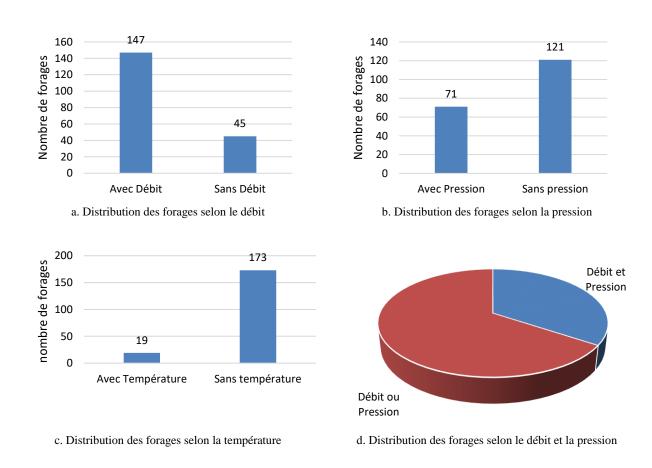


Figure 13 : Distribution des forages selon les paramètres énergétiques.

Il est à noter que les forages ayant toutes les données énergétiques (pression, débit et température) sont au nombre de 10 uniquement, représentant 5% des forages actuellement en exploitation.

Ce manque de données de débit, de pression et de température reflète bien la négligence du potentiel énergétique des forages albiens. Il est évident que les opérateurs responsables directs et indirects des forages se sont contentés de recenser les forages et de relever uniquement les informations jugées prioritaires (état, localisation et éventuellement le débit).

Nous avons pu constater – après analyse statistique à plusieurs variables – (annexe 5), que le débit est faiblement corrélé avec l'année de réalisation du forage ; les données sur le débit sont collectées systématiquement ou presque (figure 14).

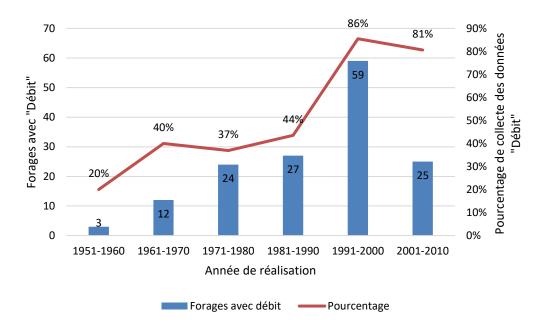
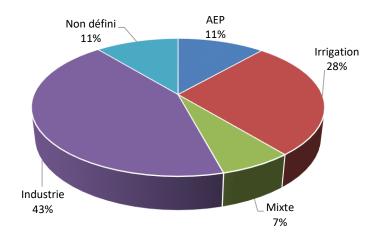



Figure 14 : Evolution de la collecte des données de débit en fonction de l'année de réalisation.

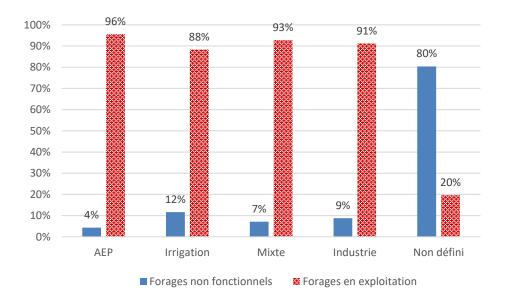
Cependant, il n'existe pas de corrélation entre la pression et l'année de mise en service des forages ; ce qui affirme que les données sur la pression ne sont pas ou très rarement collectées. La température quant à elle, est très faiblement corrélée avec le débit et la pression ; ce qui veut dire que si nous avons des données de débit et de pression, nous aurons probablement les données de température. C'est dû probablement à des requêtes émises par les autorités compétentes concernant des forages bien spécifiques.

III.4.3. Analyse du volet « Usage de l'eau des forages »

Le résultat de l'enquête du point de vue utilisation de l'eau est présenté dans la figure 15. Plus de 10% des forages en exploitation sont à usage non défini. Le secteur de l'industrie englobe 43% des forages en exploitation ce qui reste très important, suivi par l'irrigation avec 28% des forages actuellement en exploitation contre seulement 11% destinés à l'approvisionnement en eau potable.

Figure 15 : Usage de l'eau de la nappe du CI.

La faible part dédiée à l'AEP n'est pas un indicateur à elle seule, étant donné qu'il existe d'autres nappes comme celle du Complexe Terminal qui est assez souvent utilisée pour cette fin, compensant ainsi le manque à gagner dans cette catégorie.


Les forages destinés à l'industrie se situent tous dans la wilaya de Ouargla, avec ces différentes zones industrielles dont la plus importante est celle de Hassi Messaoud englobant plus de 57% de ces forages.

Les régions les plus représentées par l'usage agricole sont situées au Nord-Est de la nappe du CI. Nous pouvons citer : El-Meghaïer, Djamaa, M'rara et N'Goussa. La dominance des forages dédiés à l'irrigation dans cette région va de pair avec la politique algérienne du développement agricole des zones sahariennes. Les programmes lancés dans ce sens ont été accompagnés par la réalisation de forages pour l'irrigation.

Cependant, tous les forages de la Wilaya de Ghardaïa, avec surtout ses régions à vocation agricole d'El Goléa (Ménea), n'ont pas été pris en compte pour les raisons présentées au début de ce chapitre (§ III.2.).

L'irrigation est accompagnée le plus souvent par un accroissement de l'approvisionnement en eau potable du fait du déplacement des populations vers ces zones. Ceci se traduit par la réalisation de forages destinés à l'AEP dans les agglomérations. Les forages mixtes (représentant 7%) sont relativement anciens (avant l'année 1989); ils ont été réalisés pour subvenir à une population restreinte avec des exigences agricoles modestes.

Après avoir fait la comparaison des données de l'usage de l'eau des forages actuellement en exploitation contre les données des forages non fonctionnels, nous remarquons que 80% des forages non fonctionnels sont à usage non défini (figure 16). Ceci nous indique que le recensement obtenu n'est pas l'issu d'une mise à jour d'un autre recensement mais c'est le premier de son genre. Si les forages à usage inconnu avaient été recensés auparavant nous aurions dû avoir une trace de leur usage. Comme l'année de réalisation des forages actuellement non fonctionnels et à usage non défini s'étale de 1954 jusqu'en 2003, nous déduisons que les raisons du manque d'information se confondent entre la négligence professionnelle et le manque réel d'information vu l'âge de quelques forages non fonctionnels.

Figure 16 : Comparaison de l'usage de l'eau entre les forages non fonctionnels et les forages en exploitation

III.4.4. Analyse du volet « localisation des forages »

Nous avons remarqué que la plupart des forages recensés est répartis entre la wilaya de Ouargla et la wilaya d'el Oued avec respectivement 79% et 11% (figure 17), suivi de la Wilaya déléguée de Touggourt avec 5% de forages. Le reste des forages (17 représentants 6% de la totalité des forages recensés), est réparti entre plusieurs autres wilayas.

Nous remarquons que la Wilaya de Ghardaïa n'est représentée dans cette enquête que par 7 forages ; Ce chiffre ne représente nullement la réalité, car la région d'el Goléa (El Menia) est supposée être bien dotée de forages destinés à l'irrigation selon le plan de développement du Ministère de l'Agriculture du Développement Rural et de la Pêche en collaboration avec les banques nationales (Les formules d'octroi de crédit agricole ETTAHADDI et IMTYAZ). Les données sur ces forages vont probablement être classées lors d'un prochain recensement.

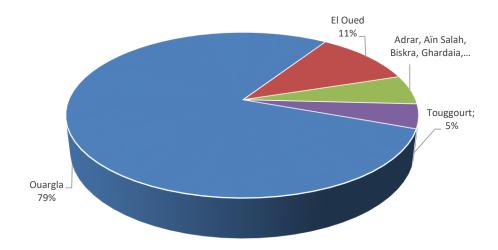
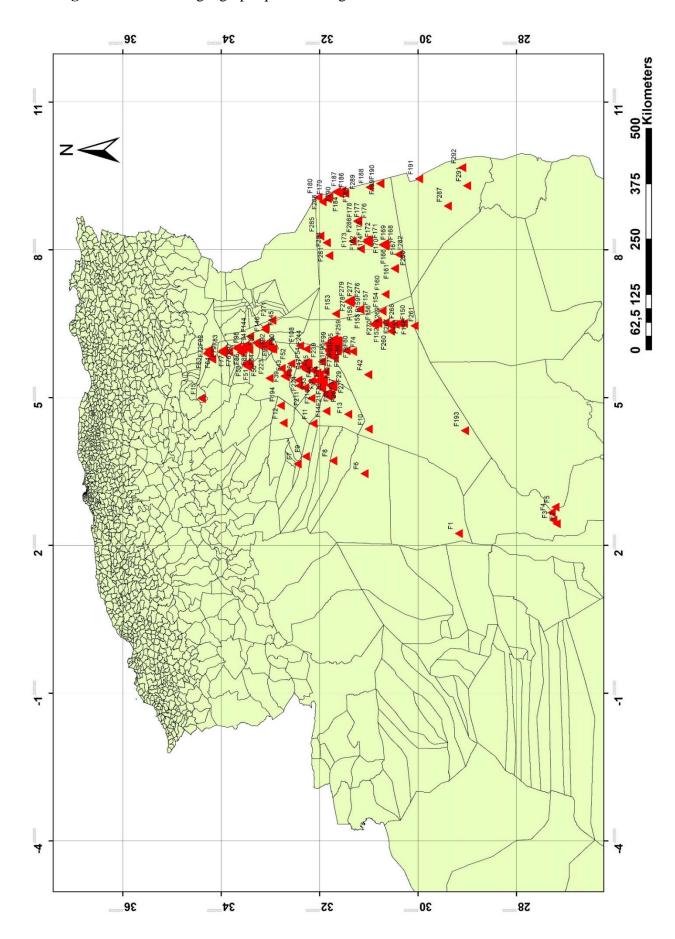


Figure 17 : Répartition des forages recensés par Wilaya


Presque la moitié des forages de la wilaya de Ouargla (47%) sont localisés dans la commune de Hassi Messaoud et sont destinés pour la plupart à une utilisation hors secteur agricole. Ceci est dû au caractère industriel de la région qui est destinée essentiellement aux hydrocarbures.

La Daïra de Djamaa est représentée par 47% des forages recensés dans la wilaya d'el Oued. La vocation de la région est perçue par le nombre de forages destinés à l'usage agricole représentant 60% des forages de la localité. Le reste des forages est destiné à l'approvisionnement en eau potable.

Il est à noter que la région d'Oued Righ, région agricole située entre la wilaya d'el Oued et la wilaya déléguée de Touggourt, est dotée de 78% des forages des 2 wilayas. Ce qui n'est pas négligeable, car la région a bénéficié des projets de relancement agricole des années 2000 (PNDA, etc.).

La distribution générale des forages est représentée sur la figure 18, qui visualise clairement la dominance de la Wilaya de Ouargla et le caractère industrielle de la région de Hassi Messaoud, suivi par la vallée d'Oued Righ.

Figure 18 : Position géographique des forages recensés du Continental Intercalaire

La figure 19, issue d'une simulation encadrée par l'Observatoire du Sahara et du Sahel (OSS) dans le cadre de l'étude du Système Aquifère du Sahara Septentrional (SASS) et reportée dans les documents du CDARS (1999b), présente la situation de la piézométrie par rapport au sol en 2038 en Algérie. Elle met en évidence les zones les plus sensibles de l'aquifère.

34 -150 200 Km 8 Limite d'artésianisme Vad O Stan Charles Piézométrie (2038)

Figure 19 : Situation de la piézométrie par rapport au sol en 2038.

Source: CDARS, (1999b).

III.4.5. Analyse du volet « date de mise en service des forages »

L'analyse du volet « date de mise en service des forages » est importante, car elle nous renseigne principalement sur la longévité de l'artésianisme.

La figure 20 présente le nombre de forage réalisé pour chaque classe de date, de 1951 jusqu'à 2010. Il est à noter que 23 forages ont une date de réalisation inconnue.

La période de 1951 jusqu'à avant l'indépendance de l'Algérie a connu une nette augmentation du nombre de forages, coïncidant avec la période de prise de conscience de l'immensité de l'aquifère du Continental Intercalaire. Un total de 15 forages est recensé. La période allant de l'année 1971 jusqu'à l'an 2000 est marqué par une nette amélioration de la réalisation des forages, ceci s'explique probablement par l'intention de l'Algérie de lancer le secteur agricole dans les zones arides.

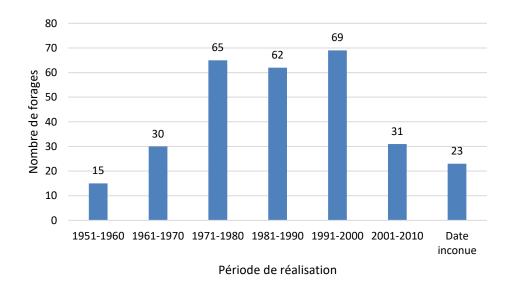
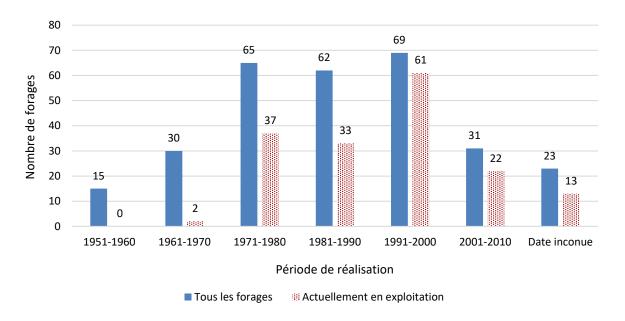



Figure 20 : Répartition des forages recensés par date de mise en service.

Cette période, coïncidant avec la révolution agraire et la nationalisation des hydrocarbures et celle qui suit (de 1961 à 1980) a sans doute influencé l'exploitation du CI. Effectivement, 41% de ces forages est destiné à l'industrie des hydrocarbures tandis que l'irrigation et l'AEP se partagent 59% des forages, sans prendre en considération les forages à année de réalisation inconnue. Ceci peut s'expliquer probablement par l'extension des zones urbaines au Sud de l'Algérie.

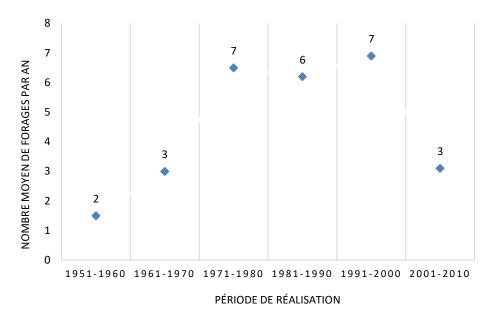
Comme conséquence aux problèmes de remontées des eaux dans la wilaya d'El Oued, nous pensons que l'Etat a diminué significativement le nombre de forages dans la région pour atteindre un nombre de 11 forages réalisés en 10 ans (période 2000-2010). Cependant, ce chiffre reste modeste et peut être complété par les forages avec des dates de réalisation inconnues, car nous avons trouvé une trace de réalisation de 9 forages entre 2004 et 2008 selon CASTORO (2008).

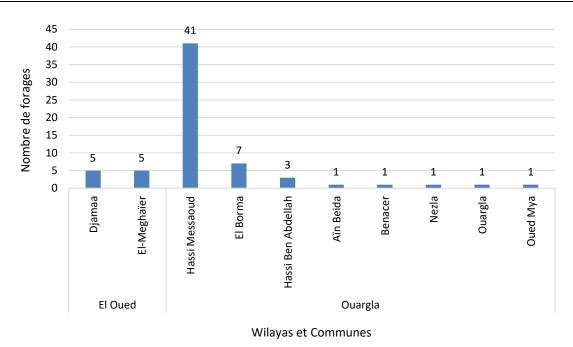
La figure 21 nous présente une comparaison entre le nombre de forages actuellement en exploitation et tous les forages réalisés pour les mêmes périodes.

Figure 21 : Comparaison entre le nombre de forages actuellement en exploitation et tous les forages réalisés pour les mêmes périodes

Nous remarquons qu'il y a plus d'efficacité dans la réalisation et la gestion des forages à partir de l'année 1990 ; il y a moins de forages non fonctionnels. Par contre, nous remarquons qu'il y a une moyenne de 50% des forages recensés sur la période de 1970 à 1990 qui sont actuellement non fonctionnels.

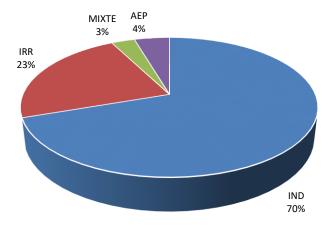
La figure 22 présente l'évolution de la moyenne par an du nombre de forages opérés pour chaque classe d'année. Elle montre clairement l'évolution progressive allant de 3 forages par an jusqu'à 7 forages par an pour la période entre 1961 et 1980. Ensuite, l'équilibre durant la période 1980 à 2000 avec une moyenne de 7 forages par an.




Figure 22 : Evolution du nombre moyen annuelle de forage par classe d'année.

Cette dernière période marque un tournant dans la gestion des forages du CI; Après la création d'un organisme de concertation (OSS) entre les pays se partageant la nappe du Continental Intercalaire à savoir l'Algérie, la Tunisie et la Lybie, le nombre de forage était revu à la baisse (3 forages par an) afin de préserver l'eau de cette nappe (figure 20 et 22).

III.5. Analyse des données sur les forages ayant le couple de paramètres« Débit – Pression »


Le tableau de l'annexe 6 présente les 66 forages recensés ayant des données exploitables du point de vue énergie. Nous constatons que la wilaya de Ouargla est mieux représentée en forages avec 85% des forages actuellement en exploitation et ayant les données de débit et de pression.

Les 2 grandes communes de la Wilaya d'El Oued à savoir Djamaa et El-Meghaïer se partagent la totalité des forages actuellement en exploitation et ayant les données de débit et de pression (figure 23). Ces 2 régions sont à vocation agricole notamment dans la production de dattes. Nous pensons que l'Etat a joué un rôle stratégique en dotant la région avec des forages albiens ; 80% de ces forages ont été réalisés entre 1997 et 1999 (moins de 3 ans). Ces forages sont dédiés à l'irrigation contre 20% dédiés à l'AEP.

Figure 23 : Répartition des forages actuellement en exploitation avec les données « débitpression » par Commune et par Wilaya.

La figure 24 nous présente la répartition des forages actuellement en exploitation et ayant les données de « débit-pression » en fonction de l'usage de l'eau.

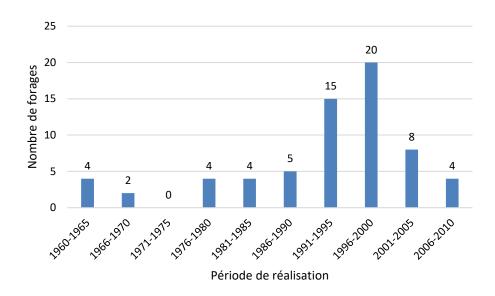


Figure 24 : Répartition des forages actuellement en exploitation et ayant les données de « débit-pression » en fonction de l'usage de l'eau.

53% des forages destinés à l'irrigation sont localisés dans la wilaya d'El Oued (région d'Oued Righ). Ce qui nous amène à dire que cette région a une valeur très importante, tant sur le plan urbain qu'agricole (AEP, irrigation). Les données manquantes sur la Wilaya de Ghardaïa auraient donné beaucoup plus de valeurs à l'aspect agricole et par conséquent l'interprétation aurait plus de sens.

La nappe du CI est convoitée pour son artésianisme. L'analyse de la période de mise en service des forages est très importante, car elle nous renseigne principalement sur la longévité de cet artésianisme.

Effectivement, d'après la figure 25 (données synthétisées du tableau de l'annexe 6), nous remarquons que plusieurs forages sont toujours en exploitation « artésienne » depuis très longtemps (depuis 1960 pour quelques-uns). Sur la période allant de 1991 à 2000, nous remarquons qu'il y a plus de la moitié (51%) de tous les forages réalisés dans la même période qui ont des données de débit et pression.

Figure 25 : Répartition des forages actuellement en exploitation avec les données « débitpression » par période de réalisation.

La période de 1990-2000 a donc connu une prise de conscience quant au prélèvement des données liées à l'énergie sur le terrain. Nous pensons que les programmes d'aide et de promotion agricoles de l'époque (PNDA, etc.) ont fait le nécessaire pour promouvoir ce genre de raisonnement, ceci a eu pour conséquence l'augmentation de la population s'intéressant à l'agriculture dans les zones arides.

III.6. Analyse de l'aspect énergétique de la nappe du CI

III.6.1. Vue d'ensemble

La nappe du Continental Intercalaire est exceptionnelle de par son immensité et par le potentiel énergétique de ses forages. Ce potentiel est perceptible de par l'artésianisme de ses forages dits « albiens » (eau jaillissante sans pompage à des pressions et débits variables).

Les forages ciblés par cette analyse doivent répondre à certains critères :

- ✓ Forages actuellement en exploitation : nous avons recensés 192 forages (figure 12).
- ✓ Forages ayant les données jumelées de débit et de pression : 147 forages sur 192 (l'explication de ce nombre au lieu des 66 forages annoncés dans le paragraphe §III.3.2. est donnée dans le paragraphe §III.6.2.).
- ✓ Forages ne constituant pas une valeur aberrante du point de vue géolocalisation : 14 forages sont éliminés vu l'éloignement du lot principal des forages afin d'éviter les erreurs lors du krigeage.

Nous avons donc au total 133 forages correspondant aux critères cités ci-dessus, à analyser du point de vue potentiel énergétique. L'annexe 7 présente un tableau avec les 133 forages et un 2^{ème} tableau contenant les 14 forages exclus de l'analyse.

III.6.2. Traitement des données relatives au potentiel énergétique

Le traitement des données brutes obtenues suite à notre enquête auprès des organismes concernés nous présente 192 forages toujours en exploitation. Ensuite, nous avons fait ressortir tous les forages ayant les données de débit et qui sont au nombre de 147 forages. Après avoir placé les forages sur la carte d'Algérie, et pour ne pas compromettre le traitement par la méthode du krigeage, nous en avons éliminé 14 forages très éloignés (tableau 2 de l'annexe 7), se trouvant presque tous dans la commune d'El Borma à l'extrême Est de la Wilaya de Ouargla, ramenant ainsi le nombre de forages à 133.

Les données relatives à l'aspect « énergie » des forages albiens actuellement en exploitation, accompagnées du potentiel énergétique calculé grâce à la formule présentée au début de ce chapitre, sont sur le tableau de l'annexe 8.

Ce tableau contenait uniquement 66 forages avec des données de pression et de débit. Cependant, nous avons pu obtenir de la part de l'ONID les données de pression estimée, et qui sont consignées sur le tableau de cette même annexe.

Ces données n'ont pas été prises en compte lors de l'étude de l'enquête. Néanmoins, elles constituent un atout majeur pour d'une part, comprendre la distribution du potentiel énergétique de la nappe albienne et d'autre part, estimer ce potentiel afin de mieux le valoriser et rationaliser l'utilisation de cette eau.

III.6.3. Analyse des résultats

III.6.3.1. Présentation générale

La figure 26 nous permet de bien visualiser le potentiel énergétique grâce au tri des données par ordre décroissant. La puissance hydraulique cumulée de tous les forages dépasse 19MW, ce qui n'est pas négligeable. Bien au contraire, cette puissance est perdue dans la nature chaque seconde, durant toute l'année. Le calcul de l'énergie issue de tous les forages albiens et perdue durant une année, nous amène à plus de 168,9 GWh/an, correspondant à plus de 14520 TEP (Tonnes Equivalent Pétrole).

Le maximum de potentiel énergétique est atteint par le forage F44 (Albien SEMPAC – Commune de Hassi Ben Abdallah - Ouargla) avec presque 1.3 MW totalisant à lui seul 7% du potentiel énergétique cumulé de tous les forages en exploitation ayant les données de « débit-pression ».

Nous avons remarqué aussi que 6% des forages ont un potentiel supérieur à 500kW totalisant 30% du potentiel énergétique cumulé (annexe 8). Ces forages sont localisés pour la plupart (75%) dans la wilaya d'El Oued (région d'Oued Righ) et sont destinés à l'irrigation. Ceci place la région d'Oued Righ au sommet de la liste des lieux ayant un potentiel énergétique exploitable conséquent.

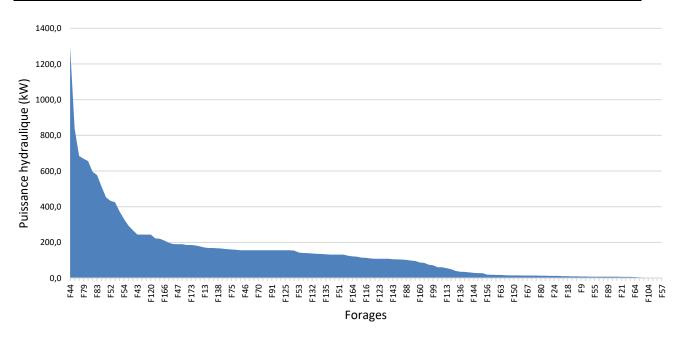
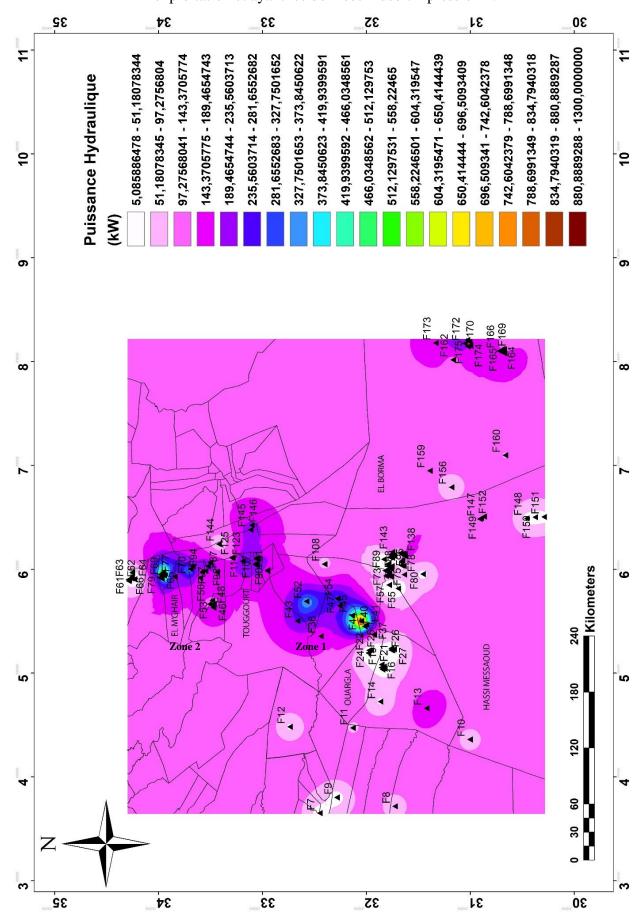


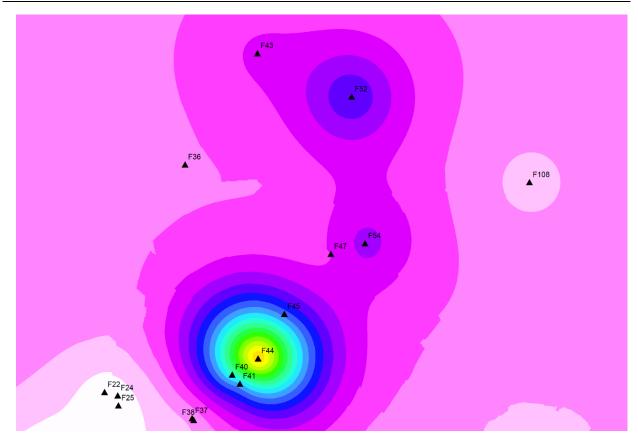
Figure 26: Puissance hydraulique des forages du CI actuellement en exploitation.

D'autres forages, au nombre de 68 et représentant 51% de ces forages, ont un potentiel énergétique très satisfaisant, variant entre 100 et 460kW. Ces forages avec leur potentiel bien mis en valeur, peuvent subvenir aux besoins des exploitations agricoles avoisinantes, à ceux des habitations du lieu ainsi qu'à presque toute la région dans le cas où un projet sérieux et bien étudié d'intégration de dispositif de transformation de l'énergie hydraulique en énergie électrique serait amorcé.

Le minimum de puissance requis sur un forage est celui nécessaire pour faire refroidir l'eau de ce même forage. Lors de notre dernière visite sur terrain, nous avons prélevé la puissance électrique des moteurs faisant tourner les ventilateurs sur les tours de refroidissement et qui est de l'ordre de 30kW. Nous pouvons considérer les forages d'une puissance hydraulique inférieure à 30kW, et qui sont au nombre de 43 (représentant 32%), comme non rentable dans le cas de projet individuel. Cependant, ces forages restent intéressants s'il y a la possibilité de jumelage de leur capacité qui dépasse 480 kW ensemble.

III.6.3.2. Réalisation de la carte du potentiel énergétique de la nappe albienne


Il s'agit de créer une interface graphique qui nous aidera à mieux visualiser le paramètre énergétique en ayant une vision plus précise de la distribution du potentiel énergétique.


Le tableau de l'annexe 9 présente les données que nous avons utilisé pour la création de la carte. Ces données ont été introduites dans un logiciel d'information géographique (logiciel SIG) puis traitées par la méthode du « krigeage ». Nous avons eu l'aide d'un enseignant expert en SIG.

Le krigeage est une méthode d'estimation linéaire garantissant le minimum de variance. Il correspond à une méthode géostatistique d'interpolation spatiale. Son principe consiste à prédire la valeur des points non échantillonnés à partir des points échantillonnés. Le résultat du krigeage est donné sous forme graphique (figure 27).

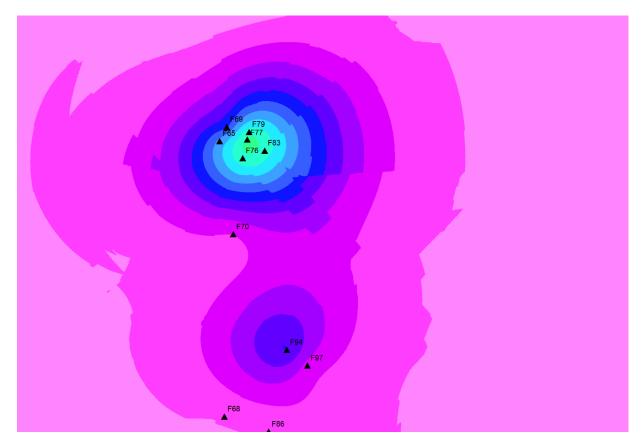

La figure 27 présente une carte de géolocalisation de tous les forages concernés par le potentiel énergétique (133 forages) avec la représentation visuelle par nuance de couleur de la puissance hydraulique exprimé en kW. Cette carte est reprise en annexe 11 en format A3 pour plus de visibilité.

Figure 27 : Carte de distribution du potentiel énergétique des forages actuellement en exploitation et ayant les données « débit – pression ».

a - Zone 1

b - Zone 2

Figure 28 : Agrandissement de quelques zones de la figure 27.

Nous avons obtenu, par le biais de la méthode de krigeage, plusieurs zones de différents potentiels. La carte sur la figure 27 présente la majorité du territoire du recensement des forages est à une plage de puissance entre 140kW et 189 kW, ce qui est très satisfaisant. Nous pouvons dire que les forages qui seront réalisés sur cette zone auront un bon potentiel.

Cependant, les zones ayant une plage de couleur tendant vers le blanc ont un très faible potentiel; c'est dû soit au faible débit soit à la faible pression de sortie. Nous pensons que c'est suite à la fermeture partielle des vannes sur la tête de ces forages qui a engendré cette diminution de débit dans cette zone.

Les autres zones, dépassant les 200 kW et représentées sur la carte de la figure 27 à partir de la plage de couleur bleue, sont localisées presque toutes entre la longitude 5° et 6° orientées Nord-Sud. Ces zones sont considérées comme des zones à fort potentiel. Si nous calquons ces informations sur la carte présentée sur la figure 19, nous remarquons que c'est la même zone qui gardera son artésianisme jusqu'en 2038 selon la simulation. Donc, c'est une région à fort potentiel énergétique et en plus elle le gardera longtemps.

La figure 28 présente des détails des forages les plus forts du point de vue potentiel énergétique. Les zones 1 et 2 présentées dans cette figure sont visibles sur la carte A3 de l'annexe 12.

Nous remarquons (zone 1) que le forage à très fort potentiel (F44) est entouré par d'autres forages moins importants, ayant la moitié de son potentiel (F40, F45 et à un degré moindre le F41). Ceci est probablement dû à la fermeture partielle des vannes des forages et non pas au potentiel réel de ces derniers. Nous ne contestons pas la fermeture des vannes, bien au contraire, c'est une eau « presque » non renouvelable, il faut la préserver, mais aussi *rationaliser* son utilisation.

Finalement, nous pouvons dire que la partie Nord-Est de la nappe albienne en Algérie, caractérisée par la région d'Oued Righ, est une zone bien dotée en énergie non exploitée pouvant être utilisée directement (géothermie, etc.) ou indirectement par le biais de transformation (en énergie électrique, etc.); elle présente néanmoins une hétérogénéité dans la distribution de ce potentiel suivant un axe orienté Sud-Nord suivant le sens d'écoulement d'Oued Righ.

Chapitre IV

La microcentrale hydroélectrique : tests et réflexions sur son intégration

Chapitre IV – La microcentrale hydroélectrique : tests et réflexions sur son intégration

Le noyau de cette étude se résume dans l'évaluation du potentiel énergétique des forages albiens en Algérie. Cette évaluation est le fruit de l'analyse des données récoltées dans ce sens et présentée dans le chapitre précédent. La valorisation directe de ce potentiel n'est possible que par l'utilisation d'une turbomachine.

Vue les conditions du milieu ainsi que les caractéristiques de cette énergie disponible, la microcentrale hydroélectrique semble être la machine la plus apte à résoudre cette équation. Effectivement, le débit ainsi que la pression disponible ne peuvent être valorisés que par ce type de turbogénérateur.

La microcentrale hydroélectrique utilisée est de type Pelton. Cette machine a été mise gracieusement à notre disposition par ses propriétaires à des fins de recherches. Il est nécessaire de mentionner que cette disponibilité était répétitive mais limitée dans le temps.

IV.1. Présentation de la microcentrale hydroélectrique utilisée

IV.1.1. Cadre général

La microcentrale hydroélectrique disponible pour l'expérimentation (figure 29) est fournie avec une turbine à action, de type Pelton, qui transforme l'énergie cinétique de l'eau en énergie électrique, par le biais d'un jet intense et concentré qui exerce une pression sur les aubes placées à la périphérie de la pièce tournante. Ce même jet est transformé en couple et en puissance mécanique sur l'aube de la turbine, puis en électricité par le biais de la génératrice de courant.

Cette microcentrale peut générer une puissance maximale de 7 kW. Elle fournit une électricité ayant les caractéristiques suivantes : 230V/32A monophasée et une fréquence de 50Hz à 1500 tr/min. Le débit maximal admissible est de 720 l/min.

Figure 29 : La microcentrale hydroélectrique utilisée.

IV.1.2. Description de la microcentrale hydroélectrique utilisée

IV.1.2.1. La roue Pelton

Les aubes de la roue sont en acier inoxydable à résistance mécanique élevée. Elles sont fixées au disque par soudure sans addition de métal. La dimension des aubes dépend de la dimension des injecteurs (figure 30).

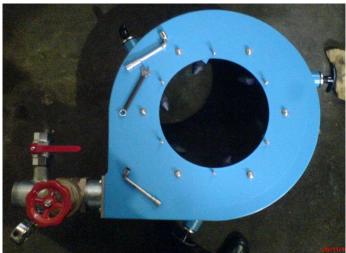


Figure 30 : La roue Pelton de la microcentrale hydroélectrique

Dans cette microcentrale hydroélectrique, l'arbre de la turbine s'emboîte directement sur l'arbre de la génératrice ; le disque de la roue est emboîté directement sur l'arbre de la génératrice par un moyeu à pince. Le disque et le moyeu sont en acier inoxydable. Toutes les pièces en rotation sont équilibrées dynamiquement.

IV.1.2.2. Le bloc Turbine

Le bloc est constitué d'un composé soudé en tôle d'acier (figure 31-A). La partie supérieure du cylindre intérieur, les deux brides et le cylindre extérieur forment le distributeur. Le cylindre intérieur a aussi pour fonction de recevoir et de canaliser l'eau dans le puits d'écoulement. De plus, les supports soudés sur la surface extérieure du cylindre fixent et soutiennent le groupe turbine-génératrice (figure 31-C).

A. Bloc Turbine vue du haut

B. Injecteurs du bloc Turbine

C. Bloc Turbine et le puit d'écoulement

Figure 31 : Le bloc Turbine de la microcentrale hydroélectrique et ses injecteurs.

Les injecteurs de distribution (figure 31-B), au nombre de 6, sont moulés dans une matière plastique qui a une durée de vie très longue. Les injecteurs de distribution sont équipés de 3 vannes piston pour la régulation manuelle du jet et du débit.

IV.1.2.3. Le bloc d'alimentation

Il a pour fonction de connecter la conduite forcée d'alimentation en eau issue du forage au bloc turbine. Il se compose d'un tuyau d'introduction, sur lequel est installée la vanne pour la commande de la microcentrale, la prise pour le manomètre et la prise latérale « Bypass » de l'eau en pression (figure 32).

Figure 32 : Le bloc d'alimentation de la microcentrale hydroélectrique et ses injecteurs.

Le bloc d'alimentation, par le biais de ses vannes, sert à contrôler la quantité d'eau apportée et garder la microcentrale hydroélectrique dans sa plage de fonctionnement normale (vitesse de rotation de la roue Pelton et la génératrice).

IV.1.2.1. La génératrice

La génératrice utilisée, sans balais (brushless), est de type synchrone triphasée, d'où est prélevée de l'énergie monophasée. L'inducteur tournant est à 4 pôles saillants. Le courant d'excitation est fourni par une génératrice auxiliaire dont le rotor (induit) est monté sur le même arbre que la génératrice principale. La régulation de l'excitation est de type "Compound". La génératrice est séparée de la turbine par un bouclier spécial qui la préserve de tout contact avec l'eau.

IV.1.2.2. Le tableau de commande électrique

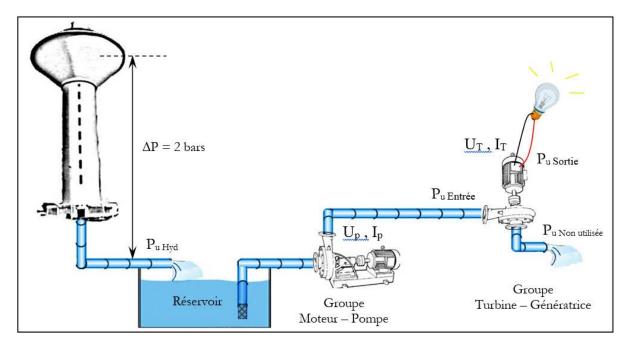
Le tableau de commande électrique se compose d'un petit coffre en tôle d'acier contenant les composants ci-dessous :

- ✓ Les instruments de mesure électriques, tels que : un voltmètre, un fréquencemètre digital, un ampèremètre indiquant le courant total distribué par la génératrice, et un autre ampèremètre indiquant le courant absorbé.
- ✓ Les protections électriques tels que : un disjoncteur magnétothermique qui protège la génératrice contre les éventuels courts-circuits sur la ligne d'utilisation, un relais électronique de tension qui active deux avertisseurs (sonore et visuel) dans le cas de variations de tension dépassant les limites préfixées.
- ✓ Les borniers pour le branchement des fils de la génératrice, de la ligne des usagers et du régulateur électronique. L'isolement et les dimensions des bornes sont adaptées aux tensions et aux sections des conducteurs employés.

IV.1.2.1. Le régulateur électronique

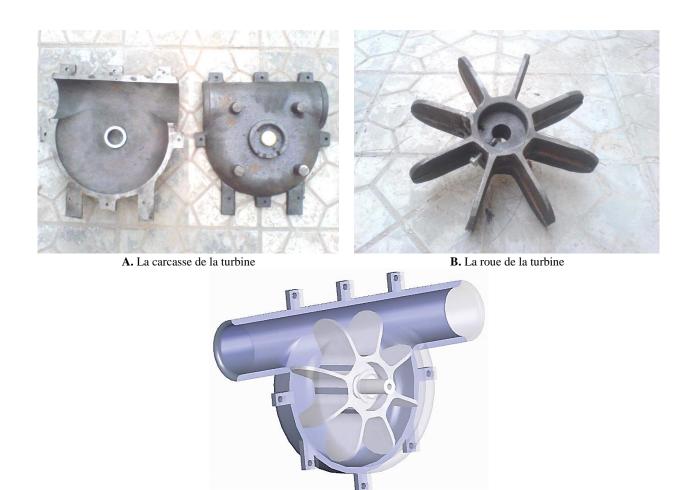
Le régulateur électronique se compose de l'unité de contrôle et des résistances ballast. Le régulateur veille à maintenir tension et fréquence constantes, étant donné que l'absorption de l'énergie produite par le groupe turbine-génératrice est toujours constante.

Cette microcentrale hydroélectrique travaille toujours à pleine charge et le régulateur veille à dissiper, au moyen de résistances ballast, l'énergie produite par la microcentrale et non utilisée par les usagers. La dissipation de l'énergie en trop se fait par l'air ou dans l'eau, au moyen d'éléments dispersifs largement dimensionnés, qui sont automatiquement branchés ou débranchés par l'unité électronique de contrôle du régulateur.


IV.2. Présentation des différents tests/tentatives d'adaptation de la microcentrale hydroélectrique aux forages existants

Il est utile de signaler que le cadre des essais faits au niveau de la wilaya de Ouargla ainsi que la Wilaya de Biskra, à savoir : l'éloignement de ces lieux de tous magasin, l'humeur des responsables des lieux, la curiosité accrue ainsi que le sens des accompagnateurs de vouloir faire les choses à leur manière, ne permettaient aucune rigueur scientifique dans le suivi de ces tests. Nous nous sommes contentés de prélever uniquement les résultats de sorties. Les données concernant les forages n'étaient pas toujours disponibles.

IV.2.1. Conception et essai in situ d'une turbine


Nos premières réflexions tournant autour de l'intégration d'une microcentrale hydroélectrique aux forages albiens ont été signalées depuis 2008. En tant que premiers tests, nous avons tout d'abord utilisé des PATs ou pompes inversées. L'utilisation de pompes fonctionnant comme des turbines (PAT) s'est avérée une alternative durable pour la gestion des réseaux de distribution et la production d'hydroélectricité (Pugliese *et al.*, 2016 ; Jain *et al.*, 2014).

Nous avons par la suite confectionné une turbine de forme très basique afin de faire des tests préliminaires au niveau de l'ENSA ex. INA (Figure 33). Le dimensionnement théorique de la roue de la turbine est passé par plusieurs étape jusqu'à atteindre l'étape de réalisation finale du prototype (figure 34). Les résultats de ces tests ont été décrit et consignés sur l'article de Etsouri et al., (2018).

Figure 33 : Schématisation du principe de fonctionnement de l'installation testée à l'ENSA ex. INA

Les résultats de cette réflexion étaient très prometteurs. Par la suite, l'essai de ce prototype nous a amené à réfléchir à une turbine beaucoup plus élaborée. Dans ce cadre, et comme la conception et la fabrication d'une microcentrale hydroélectrique ne rentre pas dans nos objectifs, nous avons dû utiliser la machine existante après accord des propriétaires. Nous avons pu tester le fonctionnement de cette dernière au niveau des laboratoires de l'ENSA.

C. La turbine modélisée avec le logiciel SolidWorks

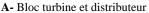
Figure 34 : La première version de la turbine.

IV.2.2. Pré-test sur une canalisation haut débit de la ville de Chifa

Cet essai a été mené sur un conduit haut débit alimentant la ville de Chifa de la Wilaya de Blida, suite à la rénovation en 2013 du canal principal venant du château d'eau alimentant une partie de la ville de Chifa. Nous avons saisi l'occasion pour faire des tests à échelle réelle du dispositif avant de les faire au Sahara, sur le territoire de l'albien. Bien évidemment, des autorisations ont été nécessaires pour procéder à cet essai (figure 35).

A- Bloc aval de distribution d'eau

B- Turbine reliée et prête à l'essai


Figure 35 : Cadre général de la microcentrale hydroélectrique.

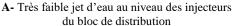
Nous avons créé sur le conduit principal une dérivation dimensionnée selon nos besoins (diamètre de l'entrée de la turbine) pour correspondre à la capacité de la microcentrale hydroélectrique.

Les réglages concernant notre dispositif ont été fait après ouverture de la canalisation principale. Il s'agit de contrôler la quantité d'eau disposible à l'entrée du dispositif.

Il est à noter que ce test avait suscité la curiosité de toute l'équipe technique ainsi que l'entourage du lieu de l'essai, ce qui a eu un impact négatif sur le bon déroulement de l'essai. Pour cette raison, et suite à la précipitation des responsables du chantier pour finir le travail ajouté à cela les conditions climatiques défavorables, aucune mesure de débit ou de pression n'était possible pour se calquer sur les situations réelles des forages albiens. Cependant, nous avions eu assez de puissance pour faire tourner la turbine et générer de l'électricité; le test reste concluant (figure 36).

B- Bloc commande de la turbine

Figure 36 : Essai de la microcentrale au niveau de la commune de Chifa-Wilaya de Blida (Mars, 2013)


Après avoir étudié la possibilité de l'intégration de la microcentrale hydroélectrique aux forages albiens, nous avons constaté que l'installation pour les tests serait plus adéquate en aval des forages plutôt qu'en amont, vu la complexité de la réalisation des essais sur les têtes des forages. Cette complexité est essentiellement d'ordre administratif; effectivement, l'intervention au niveau de la tête d'un forage nécessite non seulement des autorisations spéciales, mais aussi du personnel qualifié pouvant faire face à d'éventuelles complications.

IV.2.3. Premier essai de la microcentrale hydroélectrique sur eau issue de forage albien

Le choix de la Wilaya de Ouargla pour faire des essais de la microcentrale hydroélectrique s'était établi suite à une discussion préalable avec le CDARS (Commissariat au Développement de l'Agriculture des Régions Sahariennes). Suite à cela, 2 sites ont été dégagés pour faire les essais : un forage d'une ferme pilote, et un forage desservant des exploitations agricoles privées.

L'essai au niveau de la ferme pilote de Hassi Benabdallah (27 km au Nord-Est de Ouargla, coordonnées approximatives 32°.52" nord et 5°.26" Est) n'était pas concluant. Du fait de la faiblesse de la puissance hydraulique de l'eau disponible au niveau de cette ferme, nous avons arrêté le test. Le débit ainsi que la pression au bout de ligne étaient insuffisants pour pouvoir prétendre à une production électrique suffisante pour cette ferme pilote (figure 37 et figure 38). Nous avons donc opté pour un 2ème essai, toujours dans la commune de Hassi Benabdallah dans la Wilaya de Ouargla.

B- Manomètre indiquant une pression de fonctionnement nulle

Figure 37 : Essai de la microcentrale au niveau de la ferme pilote de Hassi Benabdallah - Wilaya de Ouargla (fin Mars, 2013)

Figure 38 : Cadre général de l'essai de la microcentrale au niveau de la ferme pilote de Hassi Benabdallah - Wilaya de Ouargla (fin Mars, 2013)

Ce 2^{ème} point d'essai ci-dessous (figure 39) est représenté par un forage albien ancien, vétuste, avec un faible artésianisme donc une faible puissance hydraulique, aux caractéristiques inconnues.

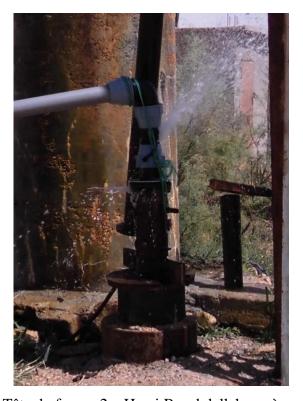


Figure 39 : Cadre Général du forage 2 – Hassi Benabdallah – Wilaya de Ouargla

Il s'agit d'un forage destiné à alimenter plusieurs exploitations agricoles avoisinantes. Vu l'ancienneté de cet ouvrage, nous étions contraints à faire des modifications sur la tête de ce forage pour l'adapter à notre dispositif (figure 40 et 41).

Figure 40: Tête du forage 2 – Hassi Benabdallah, avant modification

Figure 41 : Tête du forage 2 – Hassi Benabdallah, après modification

Après avoir relié la microcentrale hydroélectrique au forage, nous avons procédé à un test. Nous avons atteint facilement une tension électrique de 210V (figure 43). L'électricité fournie par la génératrice est consommée par les résistances de chauffage comme le présente la figure 42.

Figure 42 : La microcentrale hydroélectrique après raccordement à la tête du forage 2 – Hassi Benabdallah

Figure 43 : La commande de la microcentrale hydroélectrique après raccordement indiquant une tension de 210Volt à la tête du forage 2 – Hassi Benabdallah

Malgré le bon fonctionnement de la microcentrale hydroélectrique, le potentiel hydraulique de ce forage reste insuffisant. De plus, l'intégration d'une microcentrale hydroélectrique à ce type de forage ne serait pas rentable pour 2 raisons essentiellement : en 1er lieu, c'est que les exploitations agricoles autours de ce type de forage sont déjà raccordées au réseau électrique national ; en second lieu, c'est que ces exploitations agricoles sont soumises à la condition du « tour d'eau », par conséquent, il faut trouver une solution pour permettre à tous les bénéficiaires du forage de profiter de cette microcentrale.

IV.2.4. Second essai de la microcentrale hydroélectrique sur eau issue de forage albien

Ce second essai a été réalisé dans la wilaya de Biskra en novembre 2015. Suite à une petite recherche de lieux adéquat, nous avons pris en considération 2 communes : Oumache et El-Haouche.

La première partie de l'essai au niveau de la commune de Oumache dans la Wilaya de Biskra est intéressante de par sa localisation et sa nature malgré qu'elle n'ait pas était réalisée. Le forage est de type Albien, situé au centre de plusieurs exploitations agricoles desservant plusieurs bassins. Son eau est destinée principalement à l'agriculture (figure 44).

B- Exploitations agricoles avoisinantes

Figure 44 : Situation générale du forage de la commune de Oumache - Wilaya de Biskra

La figure 44-A nous montre les différentes sorties du forage vers les différentes exploitations agricoles, inaccessible car leurs propriétaires ne sont pas joignables. La partie B de la figure cidessus nous illustre le voisinage immédiat du forage. Au loin nous apercevons une palmeraie profitant des eaux de ce forage.

Figure 45 : Tête du forage de la commune de Oumache - Wilaya de Biskra

La figure 45 nous montre la tête du forage de la commune de Oumache de la wilaya de Biskra. Il est clair sur cette figure que le forage souffre du manque d'entretien et il n'est donc quasiment pas possible de faire quoi que ce soit à ce niveau. Il est à noter que la température de l'eau est très élevée et que l'ampleur de la fuite est impressionnante.

Figure 46 : La canalisation ciblée pour faire le test de la commune de Oumache - Wilaya de Biskra

Nous avons envisagé de faire une dérivation au niveau de la canalisation apparente dans la figure 46 afin d'y brancher notre microcentrale hydroélectrique. Malheureusement, et malgré les autorisations nécessaires pour faire le test, il était presque impossible de trouver une personne disponible immédiatement, autorisée à manipuler les tuyauteries de ce forage et ayant le matériel nécessaire pour pratiquer les modifications au niveau de la tuyauterie. Il nous aurait fallu rester une à deux semaines pour que la personne se libère et vienne pour nous assister.

L'essai au niveau de ce forage est définitivement abandonné. Le site reste tout de même à très fort potentiel énergétique et donc idéal pour une expérience à grande échelle.

La deuxième partie de l'essai a été réalisée au niveau de la commune d'El-Haouche dans la Wilaya de Biskra. Il s'agit d'un forage albien de très faible potentiel énergétique alimentant essentiellement toute la commune en eau potable par le biais d'un château d'eau adjacent (figure 47 et 48). Ses coordonnées géographiques sont 34°33'47.7"Nord et 6°02'50.3"Est.

Source: Google, (2020)

Figure 47 : Situation générale du forage de la commune d'El-Haouche - Wilaya de Biskra

B- Château d'eau de stockage et d'exploitation du forage

Figure 48 : Constituants du forage de la commune d'E-Haouche - Wilaya de Biskra

Ce forage relativement ancien, d'une profondeur de 800m, présente un très faible artésianisme, avec un débit mesuré de 174 litres/min. Pour cela, la puissance hydraulique artésienne est accompagnée par une pompe immergée pour l'aider à remplir rapidement le château d'eau afin de subvenir aux besoins en eau potable de la commune.

Ce forage est un forage unique ; il est artésien, aidé par une pompe immergée car sa puissance est insuffisante. La distribution est divisée en 3 parties, une partie va vers des bassins destinés à l'irrigation des exploitations agricoles adjacentes, une 2^{ème} partie alimente le château d'eau pour le stockage et la distribution de l'eau potable vers la commune, et une 3^{ème} partie destinée à l'autoconsommation de la station. Chaque partie est contrôlée par une vanne permettant de fermer et ouvrir la canalisation.

L'expérimentation a été réalisée sans perturbation de l'alimentation en eau de la commune grâce à la présence du château d'eau. De ce fait, nous avions la possibilité de dissocier l'arrivée d'eau de la consommation et procéder à notre essai. Il est à noter aussi que la pompe était éteinte lors de notre essai, nous avons donc bénéficié uniquement de l'artésianisme du forage.

Figure 49 : Installation de la microcentrale hydroélectrique dans la commune d'E-Haouche - Wilaya de Biskra

Figure 50 : Tension et fréquence électriques du courant issu de la microcentrale hydroélectrique dans la commune d'E-Haouche - Wilaya de Biskra

Après raccordement de la microcentrale hydroélectrique (figure 49), nous avons ouvert la vanne d'alimentation. Après stabilisation du système, nous avons obtenu une tension de sortie de 230V et une fréquence de 37.6Hz (figure 50). Il est à noter que le réseau algérien de distribution électrique nous fournit l'électricité avec une fréquence de 50Hz. La faible fréquence obtenue est due au nombre de tours insuffisants que fait la génératrice, donc la turbine, à cause du manque de puissance hydraulique. Malgré cela, cette énergie peut faire fonctionner des équipements électriques aisément. A titre indicatif, nous avons fait fonctionner une tronçonneuse électrique. Pour conclure, nous pouvons dire que cette énergie aurait suffi pour le voisinage immédiat du forage, comme faire fonctionner les équipements électriques de la loge du gardien.

IV.2.5. Discussion de l'implantation des microcentrales hydroélectriques sur les forages albiens

Les différents essais que nous avons menés ont eu un caractère spécial du fait du cadre dans lequel ont été exploité. Ils sont de type tests plutôt qu'expérimentation.

Pour comprendre ces résultats, il faut tout d'abord comprendre le contexte et le cadre des expériences menées :

- ✓ Il est difficile, quasiment impossible de faire un test grandeur réelle sur la tête d'un forage albien, en amont de tout le système. Les procédures d'obtention des autorisations ne sont pas très claires et les responsabilités ne sont pas clairement identifiées.
- ✓ Pour choisir un lieu d'expérimentation, il faut prendre en considération plusieurs points : autorisations, niveau d'intervention dans le système et région. Après tout cela, viennent les considérations de débit, pression et potentiel énergétique.
- ✓ Le choix des lieux de notre expérimentation a donc suivi la loi du porte-à-porte : nous avons fait usage des relations que nous avions pour obtenir des lieux de forages.
- ✓ Chaque essai que nous avions fait suscitait toujours la curiosité des habitants ou voisins, voir même des journalistes de la région. De ce fait, les séances de concentration sur le travail se transformaient en séance de vulgarisation autours des microcentrales hydroélectriques et des énergies renouvelables.
- ✓ Chaque essai demandait un temps impressionnant pour le faire, alors qu'à chaque fois le temps et les moyens matériels n'étaient pas suffisants.

Partant des points énumérés précédemment, le fait d'avoir installé le dispositif au complet et d'avoir procéder au test en actionnant la turbine était déjà un résultat positif. Ajouté à cela, la possibilité de générer de l'électricité à partir de l'eau des forages albiens, même à de faibles puissances, reste un exploit surtout dans des endroits improbables.

Tous ces essais sur les forages albiens nous ont mené à tirer des conclusions très favorables vis-à-vis de l'implantation d'un tel dispositif de transformation et d'exploitation de l'énergie hydraulique de la nappe du Continental Intercalaire en énergie électrique, et ce sans restriction sociale, économique et environnementale.

A partir des résultats du chapitre précédent sur le potentiel énergétique de la nappe du continentale intercalaire en Algérie, et suite aux essais d'intégration d'une microcentrale hydroélectrique à plusieurs forages de différentes régions et de type différents, nous savons maintenant que le potentiel énergétique du forage albien artésien le plus défavorable est suffisant pour subvenir aux besoins du voisinage immédiat du forage. Ceci va dans le sens où l'énergie de cette eau est déjà perdue lorsqu'elle sort du forage.

L'intégration d'une microcentrale hydroélectrique doit se faire en amont des forages et en adaptant la génération électrique à la puissance hydraulique de chaque forage. Les forages munis de refroidisseur sont les plus favorables à accueillir en premier les microcentrales hydroélectriques vu que la partie infrastructure est déjà présente.

L'optimisation de l'utilisation de l'énergie ainsi que la rationalisation de la consommation de l'eau répondent favorablement au développement durable.

IV.3. Simulation d'intégration des microcentrales hydroélectriques aux forages albiens

Le chapitre précédent nous a renseigné sur le potentiel énergétique théorique de chaque forage albien recensé. Afin de mieux comprendre ce potentiel, nous avons procédé à une analyse rapide de projet d'intégration de microcentrales hydroélectriques. Cette analyse faite à l'aide du logiciel RETScreen.

RETScreen est un système Logiciel de gestion d'énergies propres pour l'analyse de faisabilité de projets d'efficacité énergétique, d'énergies renouvelables et de cogénération ainsi que pour l'analyse de la performance énergétique en continu (figure 51).

Il permet aux professionnels et aux décideurs d'identifier, d'évaluer et d'optimiser de façon rapide la viabilité technique et financière de projets potentiels en matière d'énergies propres. Cette plate-forme logicielle d'intelligence décisionnelle permet aussi aux gestionnaires de mesurer et de vérifier facilement les performances réelles de leurs installations, ainsi que de trouver des possibilités supplémentaires d'économies et de production d'énergie.

L'option que nous avons choisie pour notre travail est « l'analyseur d'énergie virtuel », qui détermine rapidement la production et les économies d'énergie potentielles en utilisant un système de classement basé sur des données de référence. Le logiciel RETScreen présente plusieurs onglets : Lieu, installation, énergie, coût, émission, finance, risque (figure 51).

Figure 51 : Présentation de la fenêtre principale du logiciel RETScreen

Cette analyse de la viabilité technique et financière d'un projet d'intégration de microcentrale hydroélectrique liée au réseau électrique doit impérativement passer par la phase d'introduction des paramètres d'entrée. Suite à cela, RETScreen génère un rapport de sortie de plusieurs paramètres. Nous nous contenterons de l'essentiel pour notre étude seulement.

IV.3.1. Paramètres d'entrée dans RETScreen « Input »

Pour commencer l'analyse virtuelle de l'énergie, il est nécessaire de renseigner l'installation selon 4 critères : le lieu, le type d'installation (centrale électrique, dans notre cas), la technologie (turbine hydroélectrique), la taille du projet (selon la puissance et l'emplacement).

Après calcul et configuration de l'analyse, RETScreen génère automatiquement un modèle de projet basé sur des données théoriques récoltées de plusieurs bases de données. Nous allons faire des modifications sur ce modèle pour qu'il réponde à nos objectifs.

Les données du modèle sont présentées sous plusieurs onglets, nous allons essayer de présenter uniquement les données qui nous intéressent.

IV.3.1.1. Onglet « Lieu »

Il faut indiquer le lieu du projet afin d'obtenir les données climatiques de la région. Pour notre cas, chaque forage doit avoir son propre lieu. Cependant, les données climatiques fournies ne sont pas utilisées pour l'analyse de faisabilité d'un projet hydroélectrique. Elles peuvent être utiles ultérieurement, lors de l'étude d'implantation pour définir exactement le lieu, la pluviométrie et les bassins versants (selon le besoin). Les résultats d'un projet d'hydroélectricité sont liés essentiellement aux caractéristiques des forages.

IV.3.1.2. Onglet « Installation »

Cet onglet est réservé aux renseignements relatifs à l'installation ainsi que sa description générale

IV.3.1.3. Onglet « Energie »

Selon le journal officiel, l'arrêté du 23 Journada Ethania 1435 correspondant au 23 Avril 2014 fixant les tarifs d'achat garanti et les conditions de leur application pour l'électricité produite à partir des installations photovoltaïques et éoliennes, le tarif minimum d'achat garantit pour l'éolien est de 7.64 DA/kWh, contre 9.44 DA/kWh pour le photovoltaïque. Etant donné qu'il n'y a pas d'arrêté concernant l'hydroélectricité en Algérie, nous avons pris comme référence, à titre indicatif du potentiel seulement, la valeur moyenne de 8DA/kWh produite par les microcentrales hydroélectriques, ce qui n'engage en rien les autorités responsables. Cette estimation du tarif d'achat va nous renseigner uniquement sur les revenus issus de la vente de l'électricité issue des forages albiens.

Les paramètres des ressources hydroélectriques, celles de l'eau issue des forages, correspondent essentiellement à la pression (hauteur de chute), au débit et à la puissance théorique disponible.

Afin de déterminer le facteur d'utilisation de la puissance, qui est un paramètre important dans cette étude, nous avons utilisé la configuration présentée sur le tableau 5. RETScreen s'oriente vers le facteur d'utilisation pour calculer la production d'électricité du projet.

Tableau 5 : Paramètres d'entrée pris en considération dans l'analyse.

Paramètre	Valeur	Observation
Pertes hydrauliques maximales	6%	Pertes de charges hydrauliques dans les conduites d'eau. Elle varie de 2 à 7%
Pertes diverses	2%	Pertes attribuables au transformateur, à la consommation parasite d'électricité, etc. Elle varie de 1 à 3%
Rendement de la génératrice	96%	Rendement estimé. Il varie de 93 à 97%
Rendement de la turbine	85%	Rendement estimé selon une courbe de performance représentative du type de turbine. Pour une turbine Pelton à 6 jets, il varie de 80 à 90%
Disponibilité de la turbine	95%	Ce paramètre nous renseigne sur les pertes dues aux arrêts attribuables à l'entretien, les défaillances des turbines et les pannes. 95% est une valeur appropriée pour la plupart des centrales hydroélectriques
Facteur d'utilisation	75%	Valeur estimé selon les débits disponibles classés et les différents paramètres cités ci-dessus
Type de Turbine	Pelton	A choisir selon le guide de choix des turbines en fonction des débits et hauteurs de chute disponibles
Coût d'investissement	Estimé à 285 600 DA/kW (2100 €)	Les coûts de l'équipement et ceux de son installation (Génie civil compris). Estimé et majoré selon une base de données des coûts d'investissement hydroélectrique.
Coût d'exploitation et d'entretien	Estimé à 12 200 DA/kW/année (90 €)	Les coûts liés à l'exploitation et à l'entretien, qui sont majorés.

Etant donné que les estimations des coûts se font selon les bases de données étrangères, les coûts sont donnés en Euro. Le taux de change utilisé pour convertir l'Euro en Dinars Algérien est le taux de banque actuel (Février 2020) qui est d'environ 136 DA/€.

IV.3.1.4. Onglet « Coût »

Dans cet onglet, nous pouvons définir la composante exacte du coût d'investissement et coût d'exploitation et entretien. Comme le détail de ces coûts n'est pas bien défini, nous nous sommes contentés de garder les estimations données par la base de données RETScreen convertis en dinars Algérien.

IV.3.1.5. Onglet « Emission »

L'analyse des émissions est basée sur l'analyse du facteur d'émission moyen de Gaz à Effet de Serre. Les informations de la base de données RETScreen nous renseignent sur la valeur de ce facteur pour l'Algérie et qui est de 0.5977 tCO₂/MWh, après avoir pris en considération les pertes de transport et de distribution estimées à 7%.

IV.3.1.6. Onglets « Finance » et « Risque »

Ces onglets offrent les paramètres financiers ainsi que les risques liés à l'analyse de projet. Nous avons les rubriques suivantes : le total des coûts d'investissement, les encouragements et subventions, les frais annuels et paiements de la dette, les économies et revenus annuels, la viabilité financière, le graphique des flux monétaires cumulatifs, analyse de sensibilité et analyse de risque.

Comme la plupart des données relatives aux rubriques cités ci-dessus sont manquantes, il n'est pas utile d'étudier en profondeur cette partie. Comme perspective, il serait intéressant d'avoir toutes les données relatives au financement pour étudier la viabilité financière des projets hydroélectriques, en ayant un droit de regard sur les résultats les plus pertinents tel que le prix de revient de l'énergie.

IV.3.2. Paramètres de sortie dans RETScreen « Output »

Après avoir renseigner toutes les informations nécessaires tel que cité ci-dessus, des résultats apparaisse dans chaque onglet. Les plus pertinents pour notre cas sont :

- ✓ La capacité électrique réelle de l'installation, qui correspond à la puissance maximale d'électricité générée à partir du site en tenant compte des pertes et rendements du système. Elle est déterminée à partir du facteur d'utilisation.
- ✓ L'énergie électrique fournie. Elle est exprimée en MWh par an.
- ✓ Le coût d'investissement global ainsi que les frais et économies annuels.
- ✓ Revenue de vente, exprimé en DA.
- ✓ Les émissions de GES exprimées en tCO₂/an du réseau électrique de référence ainsi que le projet hydroélectrique en cours.
- ✓ La réduction annuelle brute d'émission de GES.

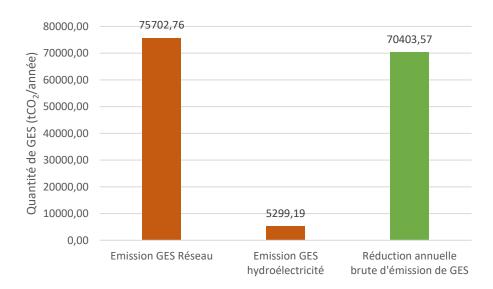
Sachant qu'un litre d'essence brûlée rejette environ 2,33 kg de CO₂, et un baril de pétrole brûlé rejette 430 kg de CO₂ (Christophe, 2020), nous pouvons calculer, à titre comparatif, l'équivalence en litres d'essence et en barils de pétrole non consommés, donc non utilisés.

IV.3.3. Résultats de l'étude de faisabilité sur les forages albiens recensés

Le logiciel RETScreen génère un rapport de l'analyse d'énergie du projet hydroélectrique. Comme c'est un rapport détaillé, nous avons préféré résumer les éléments les plus pertinents et les mettre dans le tableau de l'annexe 10.

Ce tableau présente plusieurs colonnes, réparties entre plusieurs catégories : Lieu, énergie, coût et émission de GES.

Nous remarquons, du point de vue puissance disponible, que la capacité électrique globale de tous les projets d'intégration de l'hydroélectricité semble différente du potentiel puissance calculée pour tous les forages albiens : elle est de l'ordre de 14.5 MW contre 19 MW. Cette différence réside dans le fait que pour la capacité réelle nous avons pris en considération toutes les pertes et les rendements des équipements. De même pour l'énergie électrique fournie annuellement qui est de 126 GWh/an, contre 168 GWh/an : les pertes ainsi que les rendements jouent un rôle important dans le dimensionnement des installations hydroélectriques.


Selon nos estimations, si nous équipons tous les forages recensés avec des microcentrales hydroélectriques adéquates, nous génèrerions un revenu annuel de 1 013 254 308,00DA en prenant en considération le tarif du kWh cité sur le tableau 5. Il est impératif de rappeler que ce revenu annuel est actuellement nul, l'énergie des forages albiens est dissipée en surface ; elle n'est donc pas encore exploitée.

IV.4. Impacts d'intégration des microcentrales hydroélectriques pour l'exploitation du potentiel énergétique des forages albiens

Les incidences environnementales des petites centrales hydroélectriques peuvent varier considérablement selon l'emplacement et la nature des installations. La production d'électricité par le biais des microcentrales hydroélectriques présente des impacts positifs qui motivent son développement. Les divers milieux, physiques et biologiques, sont susceptibles d'être affectés par ce type de dispositif.

Il est impératif de bien étudier et dimensionner l'installation de ce genre d'équipement afin de palier à toute éventualité. A titre comparatif, Une accumulation de petits projets sur le même cours d'eau risque de générer des impacts environnementaux plus importants qu'un seul grand (Anderson et *al.*, 2006).

Pour ce qui est des émissions de GES, la figure 52 présente les totaux pour tous les forages. Nous constatons que la réduction annuelle brute d'émission de GES est de l'ordre de 93%.

Figure 52 : Quantités de GES émises contre la réduction annuelle brute des émissions de GES

L'écart important entre les émissions de GES du réseau de référence et celles de la microcentrale hydroélectrique est justifié par le fait que la production électrique nationale repose essentiellement sur les énergies fossiles générant d'importantes quantités de GES.

Nous avons fait ressortir, après calcul, une quantité importante de GES non émise dans l'environnement. Cette quantité, de l'ordre de 70 400 tCO₂ est équivalente à plus de 163 500 barils de pétrole, ou à plus de 30 millions de litres d'essence non consommés annuellement.

Ces résultats nous amènent à dire que la rentabilité n'est pas le seul critère déterminant la viabilité de ces installations, mais la préservation de l'environnement et le respect du principe de développement durable sont aussi importants.

Tout au long de la discussion de cette analyse, nous avons considéré les forages comme un tout, formant un système virtuellement uni. Sauf qu'en réalité, les forages ne sont pas tous dans la même région, et il est inconcevable de relier physiquement la production de plusieurs forages distant. Pour ces raisons, Il serait préférable de réfléchir soit par forage individuel, soit par système très rapproché, regroupant des forages très voisins formant une unité autours d'un village ou plusieurs exploitations agricoles afin de valoriser l'exploitation de l'électricité fournie.

Nous avons résumé les impacts les plus pertinents dans ce qui suit :

- ✓ L'hydroélectricité présente l'avantage, par rapport à d'autres sources d'énergie, de ne pas contribuer à l'aggravation de l'effet de serre. Elle n'a recours à aucune combustion. Elle n'émet donc aucun gaz pouvant concourir à l'effet de serre. Elle a un impact positif certain sur l'environnement (Ferreira *et al.*, 2016).
- ✓ Bien que limitée en temps, la phase de réalisation/construction engendre de nombreux impacts négatifs sur l'environnement. Il est important de définir l'état de référence du milieu naturel avant cette étape afin de pouvoir effectuer un suivi tout au long des travaux.
- ✓ L'hydroélectricité, par le biais des microcentrales, participe activement à la diminution des coûts engendrés par la consommation électrique du voisinage immédiat des forages. Il est à noter que l'installation électrique dans les sites isolés est très coûteuse.
- ✓ Bien que les microcentrales hydroélectriques soient placées directement sur la canalisation principale, elles n'ont aucun impact sur la qualité de l'eau issue des forages. Cette dernière garde ses propriétés physicochimiques d'origine.
- ✓ Les personnes évoluant aux voisinages des forages, telles que les opérateurs, les agents de sécurité ainsi que les agriculteurs, deviennent plus autonomes du point de vue énergétique et ne restent plus tributaire d'une source d'énergie fossile.
- ✓ Les exploitations agricoles avoisinantes peuvent profiter de l'énergie électrique fourni par le forage. Ils peuvent aussi profiter de l'énergie calorifique dégagé par la chaleur de

l'eau de l'albien pour chauffer leurs bâtiments de production tels que les serres et les bâtiments d'élevage, ainsi que leur maison.

- ✓ Dans le cas où une région est desservie par plusieurs forages, ces derniers peuvent créer un réseau de distribution électrique autonome pouvant alimenter la ville avoisinante.
- ✓ Ce type d'installation, de par sa nature, fascine les observateurs. Ce qui peut devenir facilement une attraction favorisant ainsi un tourisme d'une nouvelle forme.

Tout projet de développement hydroélectrique a un impact sur l'environnement et l'aménagement du territoire (Mottet et Lasserre 2014 ; Perrin 2015 ; Manders *et al.*, 2016). Ils doivent toujours être dans le contexte du développement durable. Aujourd'hui, dans la plupart des cas, les solutions techniques permettent de limiter l'impact négatif de ces installations sur l'environnement local à un niveau tout à fait acceptable (Perrin 2015).

L'installation électrique ramenée du réseau comprend l'installation de poteaux électriques et de transformateurs de tension. L'intégration des centrales hydroélectriques supprime l'installation précédente et évite les problèmes liés à son exploitation. De plus, en raison de ses avantages et à faible impact environnemental, les petites centrales hydroélectriques peuvent être situées plus près des centres de consommation se caractérisant par une petite zone et des bâtiments à faible impact environnemental (Capik *et al.*, 2012 ; Nautiyal *et al.*, 2011 ; Okot 2013).

IV.5. Les microcentrales hydroélectriques et les exploitations agricoles

IV.5.1. Refroidissement de l'eau issue des forages albiens

L'eau arrive à la tête du forage à une pression de 10 à 30 bars, avec une température de 40 à 80°C (Hellal & Ourihane 2004 ; Ouali *et al.*, 2006). Cette eau, bien qu'abondante, est inadéquate pour une utilisation directe en agriculture car sa température est très élevée et peut créer une certaine réticence pour la plante (Seasholes & DeVoil 1998). Chandrasekharam (2000) a expliqué que l'énergie géothermique provient de la désintégration radioactive au cœur de la Terre, qui a pour effet le chauffage de la terre de l'intérieur vers l'extérieur.

L'eau s'infiltre à travers les trous à l'intérieur du refroidisseur. Ce dernier fait descendre la température jusqu'à un seuil raisonnable avoisinant 30°C par ventilation forcée, transfert de chaleur et puis évaporation (Declaye *et al.*, 2016).

Le refroidissement de l'eau est obtenu par l'éclatement de l'eau en fines gouttelettes sur des plaques métalliques. L'air atmosphérique, au contact de l'eau est chauffé et passe de l'humidité ambiante à une humidité proche de la saturation en évaporant une partie de l'eau de refroidissement. Le bilan thermique de la tour de refroidissement est présenté sur le tableau 6.

Tableau 6 : Bilan thermique de la tour de refroidissement (Oussedik, 2001).

Paramètres	Valeur
Débit d'eau à l'entrée (m ³ .h ⁻¹)	468
Pression d'entrée (Pa)	105
Température de l'eau à l'entrée (°C)	60
Débit d'air à l'entrée (m ³ .h ⁻¹)	114,94
Température de l'air à l'entrée (°C)	30
Pression d'air d'entrée (Pa)	105
Débit de sortie d'eau évaporée (m³.h-¹)	22
Température de la vapeur d'eau (°C)	45
Débit d'air à la sortie (m ³ .h ⁻¹)	114,94
Température de l'air humide de sortie (°C)	45
Débit d'eau traitée de sortie (m³.h-1)	446
Température de l'eau traitée de sortie (°C)	30

La tour de refroidissement est à ventilation forcée. L'extraction de l'air chaud et humide se fait à travers un extracteur de 5 m de diamètre, nécessitant un moteur de 30 kW de puissance. Toute cette énergie est fournie par le réseau électrique national. Cependant, l'existence du potentiel énergétique du Continental Intercalaire, évite d'apporter de l'énergie externe. L'énergie disponible d'un seul forage peut être plus que suffisante pour l'extracteur. Le reste de cette énergie peut être utilisé à d'autres fins dans les fermes voisines.

IV.5.2. Irrigation

Les exploitations agricoles dans les régions où se trouvent les eaux du Continental intercalaire dépendent du forage Albien. L'emplacement des forages est très important pour minimiser les dépenses énergétiques et financières (Okot 2013).

L'irrigation de la ferme occupe une place importante dans la facture des dépenses (Benmihoub & Bedrani 2012). Pour que l'eau atteigne la dernière rampe du pivot, une pompe submersible d'environ 25 kW est recommandée (Bruno Molle *et al.*, 2014) fonctionnant pendant 24 heures sans arrêt. Les heures de pointe ne peuvent être évitées.

L'aménagement d'un certain nombre de forages avec des centrales hydroélectriques fournirait les besoins énergétiques de l'exploitation ainsi que ceux environnants. En effet, cela dépend de l'énergie hydraulique disponible, de la turbine installée et du système d'irrigation. À la fin de la ligne, l'intégration d'une turbine appropriée est possible, comme la turbine *Schneider* qui peut produire de l'énergie à partir de sources à très faible charge hydraulique, tels que les canaux d'irrigation (Morcos et Mikhail 1986).

IV.5.3. Commodités des fermes avoisinantes

Les agriculteurs ont encore besoin d'énergie pour développer la culture, l'irrigation, l'agriculture et le confort personnel de leurs fermes (Sourisseau 2014 ; Weiland 2013). Le besoin de lumière, de ventilation, d'eau de refroidissement, d'emballage de lait et d'autres produits nécessite de l'énergie (Zahm *et al.*, 2015).

L'énergie fournie par l'eau de forage peut être suffisante pour compenser une grande partie de ces besoins. L'énergie fournie sous forme thermique peut également être nécessaire pendant les périodes les plus froides pour chauffer les serres et les installations environnantes (Dehina & Mokhtari 2012). D'ailleurs, l'exploitation de l'énergie géothermique pour le chauffage des serres en Algérie est très faible comparée aux grandes ressources géothermiques potentielles du sud de l'Algérie (Ouali *et al.*, 2011). Il est à noter aussi que même si la région du Sahara est caractérisée par un temps chaud, d'importantes variations de température sont enregistrées pendant l'hiver et les saisons d'été où les températures nocturnes pourraient atteindre une valeur inférieure à 0 °C, ce qui joue en la faveur de l'exploitation de la géothermie dans le chauffage des serres (Saibi, 2009).

Conclusion Générale

CONCLUSION GENERALE

Le Sahara Septentrional est très riche en eau s'étalant sur plusieurs milliers de kilomètres carrés et sur plusieurs niveau (plusieurs nappes). L'eau de la nappe du Continental Intercalaire dite « albienne » est souvent utilisée pour approvisionner la population en eau potable. Son caractère « artésien » la rend très convoitée par le secteur agricole, bénéficiant ainsi d'une ressource hydrique immédiatement mobilisable en quantité suffisante et sans pompage.

L'eau de la nappe albienne est dotée d'une énergie matérialisée sous forme de pression et débit atteignant des valeurs très élevées. Cette énergie est malheureusement dissipée dans la nature sans être valorisée. Le forage lui-même ainsi que les exploitations agricoles avoisinantes nécessitent de l'énergie électrique pour leur fonctionnement (refroidissement de l'eau pour l'irrigation, climatisation de bâtiments d'élevage, etc.). Pour subvenir à leurs besoins en énergie, les agriculteurs font appel au réseau publique de distribution de l'électricité, alors que le potentiel énergétique de l'eau de la nappe albienne peut subvenir à leurs besoins, voire même atteindre l'autosuffisance, par intégration d'un dispositif de transformation de l'énergie hydraulique en énergie électrique.

Dans cette optique, nous avons mené une étude sur le potentiel énergétique de la nappe albienne en Algérie afin de le valoriser. Les résultats des travaux que nous avons menés ont été structurés en quatre chapitres.

Le premier chapitre du document présente la nappe du Continental Intercalaire comme partie du Système Aquifère du Sahara Septentrional. La nappe albienne est décrite d'une manière très succincte en faisant apparaître ses caractéristiques relatives au potentiel énergétique, traduites par l'artésianisme et son maintien jusqu'en 2038 justifiant ainsi la pertinence de cette étude.

Le deuxième chapitre introduit l'hydroélectricité avec des notions qui concordent avec les objectifs de cette étude. Dans ce sens, nous avons présenté les petites centrales hydroélectriques adaptables en puissances aux forages comme solution pour valoriser le potentiel énergétique de la nappe albienne. Des chiffres sur le développement de l'énergie hydroélectrique ont été également exposés, tout en discutant l'état actuel de l'exploitation de ce type d'énergie en Algérie.

Le troisième chapitre présente l'enquête menée sur le terrain pour quantifier le potentiel énergétique de la nappe albienne. Les résultats de l'enquête sont résumés comme suit :

- ✓ Nous avons recensé 295 forages ayant un minimum de données. Cependant, nous savons que le nombre de forages et nettement supérieure suite à nos déplacements répétitifs sur le terrain. Malheureusement, nous n'avons trouvé aucune trace écrite de leur présence.
- ✓ Sur les documents recueillis auprès des organismes concernés, il n'y a que 192 forages qui sont actuellement en exploitation. Nous notons l'absence totale d'informations sur les forages de la wilaya de Ghardaïa, notamment ceux de la région d'El Ménéa (ex. el-Goléa), réputée pour sa vocation agricole.
- ✓ Sur ces 192 forages en exploitation, seulement 76% des forages ont les données de débit renseignées, contre seulement 37% des forages ayant les données sur la pression. La température, quant à elle, n'est renseignée que par 10% des forages actuellement en exploitation. Nous n'avons aucune information justifiant la non disponibilité de ces données.
- √ 10 forages uniquement ont toutes les données énergétiques (pression, débit et température) représentant 5% des forages actuellement en exploitation. Ce manque de données de débit, de pression et de température reflète bien la négligence et la non prise en considération du potentiel énergétique des forages albiens.
- ✓ Seulement 133 forages correspondent aux critères de recensement des forages ayant les données en relation avec l'énergie. Ce sont ces forages seulement qui ont fait l'objet de l'étude du potentiel énergétique.
- ✓ Il existe des forages avec un très fort potentiel, dépassant 1 MW de puissance, et d'autres forages avec une puissance atteignant à peine 1 kW.
- ✓ La puissance théorique calculée de tous les forages cumulés (au nombre de 133) est de 19 MW, ramenant l'énergie perdue annuellement à 168 GWh/an, correspondant à plus de 14520 TEP.
- ✓ Une carte de distribution énergétique a été créée par krigeage (ArcGis®). Cette carte, de par son contenu, nous renseigne visuellement sur l'état énergétique des forages. Comme perspective pour cette carte, il serait plus utile de créer une carte dynamique, à fréquence d'actualisation relativement courte pour devenir ainsi un outil d'aide à la décision.

Le quatrième chapitre présente un ensemble de travaux réalisés suite aux résultats de l'enquête sur le potentiel énergétique de la nappe albienne. Il s'agit du test d'une microcentrale hydroélectrique sur quelques forages, puis suit une simulation d'intégration de microcentrales hydroélectriques sur tous les forages recensés ayant un potentiel énergétique. Les résultats de ces deux opérations sont résumés comme suit :

- La microcentrale hydroélectrique que nous avons utilisée nous a renseigné sur l'efficacité de ce type de dispositif dans différentes situations. Nous avons constaté qu'il est impératif de bien dimensionner son équipement pour pouvoir bénéficier du meilleur rendement sans pour autant investir plus.
- ✓ L'essai au niveau de la commune d'El-Haouche dans la Wilaya de Biskra nous a révélé, qu'avec un débit si faible (de 174litre/min) nous pourrions facilement obtenir une énergie relativement satisfaisante. Ce débit est considéré comme très faible comparé au débit des forages recensés. C'est la combinaison « Débit / Pression » qui fournit la puissance hydraulique.
- ✓ La simulation d'intégration des microcentrales hydroélectriques nous a renseigné sur le potentiel énergétique réelle qui dépasse 126 GWh/an. Ce potentiel fait référence aux forages recensés ayant les paramètres énergétiques. Si nous pouvons recenser tous les forages existants en mesurant leur débit et pression, nous pourrons constater réellement le potentiel énergétique de toute la nappe. Le recensement complet des forages albiens devient une nécessité.
- ✓ Ce potentiel énergétique, pour une estimation basée sur les prix du kWh éolien et solaire correspondant à 8 DA/kWh, présente un revenu global annuel dépassant 1 Milliard de dinars algérien.
- Pour ce qui est des émissions de GES, nous constatons que la réduction annuelle brute d'émission de GES pour tous les forages est de 93%, avec 70 400 tCO₂ correspondant à plus de 163 500 barils de pétrole, ou encore à plus de 30 millions de litres d'essence non consommés. L'impact sur l'environnement reste donc positif. Il faut donc savoir comment assurer un prélèvement optimal de l'eau pour le meilleur développement de la région sans risquer pour autant de dégrader irrémédiablement l'état de la ressource.

Les objectifs à long terme visés par cette étude ne se résument pas à la production de l'énergie et sa distribution. Il s'agit plutôt de la rationalisation de l'utilisation de cette eau issue des forages albiens par le biais de l'exploitation de son potentiel énergétique. Toutefois, nous devons absolument considérer que l'énergie disponible diminuera graduellement dans le temps à cause du vieillissement du forage, de la construction d'autres forages productifs avoisinants et de la croissante interférence des champs des forages voisins.

Afin d'optimiser la gestion des forages du Continental Intercalaire, nous recommandons de procéder à un nouveau recensement global des forages albiens pour actualiser les informations sur les forages existants, ajouter les nouveaux forages et intégrer les données relatives au potentiel énergétique. Cette procédure contribuera à l'aboutissement des études hydroélectriques.

Du point de vue efficience énergétique, rationalisation de l'utilisation de l'eau et développement durable, il est plus judicieux d'équiper les forages artésiens avec des microcentrales hydroélectriques adaptées afin de récupérer l'essentiel du potentiel énergétique. Sur le plan pratique, cette énergie sera soit destinée à l'autoconsommation des forages et des fermes avoisinantes, soit distribué sur le réseau. Des études d'impacts de projets d'intégration des microcentrales hydroélectriques devront aussi voir le jour.

Aussi, vu le nombre important de forages ainsi que leur potentiel, il serait intéressant de créer une entité commerciale ayant pour objectif la gestion technique et financière de la production hydroélectrique issue des forages albiens. Cette nouvelle structure devrait faire impliquer le personnel issu du milieu proche des forages favorisant ainsi la création d'emploi local.

Un autre aspect de cette énergie doit être pris en compte. Il s'agit de l'énergie calorifique de l'eau. En effet, il est tout à fait possible de récupérer et d'utiliser la chaleur de l'eau. Diverses utilisations de cette chaleur sont possibles, car elles ne nécessitent pas toutes la même température. A titre d'exemples, les possibilités suivantes sont envisageables :

- ✓ Le chauffage des bâtiments agricoles est une alternative intéressante aux moyens conventionnels.
- ✓ L'eau extraite à 80°C peut être envoyée dans des radiateurs.
- ✓ L'eau extraite à 60°C peut être utilisée dans les sols.
- ✓ L'eau à 45°C peut servir à chauffer des serres.

Références bibliographiques

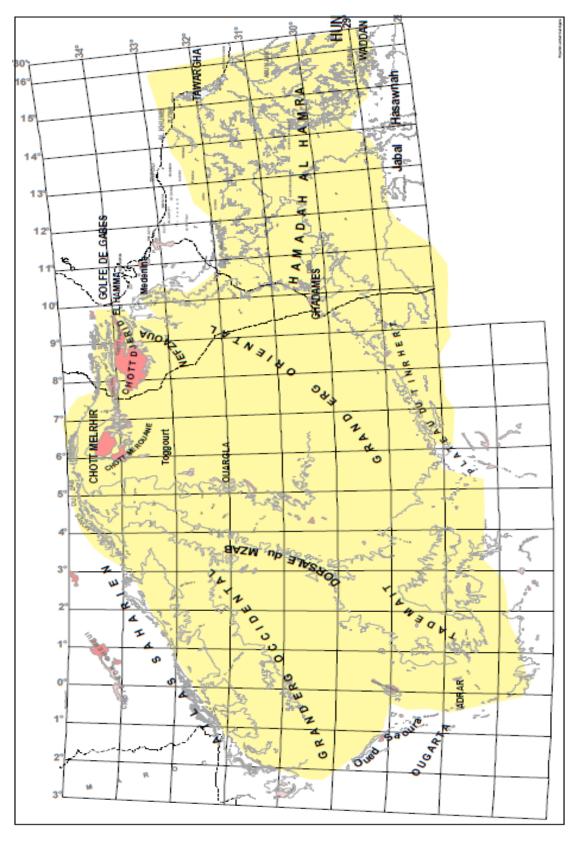
REFERENCES BIBLIOGRAPHIQUES

- 1. Abdous, B., Besbes, M., Fezzani, C., Latrech, D., & Mamou, A. (2005). Système aquifère du Sahara septentrional «SASS» Gestion commune d'un bassin transfrontière. Paper presented at the Proceeding du colloque international sur les ressources en eau souterraines dans le Sahara -CIRESS Ouargla.
- 2. ADEME. (2012). Analyse économique de la dépendance de l'agriculture à l'énergie : Evaluation, analyse rétrospective depuis 1990, Scénarios d'évolution à 2020. Rapport Final. Icare Environnement et le Céréopa. Novembre 2012.
- 3. Anderson, E. P., Pringle, C. M., & Rojas, M. (2006). Transforming tropical rivers: an environmental perspective on hydropower development in Costa Rica. *Aquatic Conservation* : *Marine and Freshwater Ecosystems*, 16(7), 679-693.
- **4. ANRH. (2002).** Journées d'étude sur : l'eau de l'albien et ces problèmes techniques actuels, communication de la direction régional sud/ANRH/ Ouargla, 27 avril 2002.
- **5. Bastien, D.** (2011). Guide d'évaluation environnementale d'un projet de petite centrale hydroélectrique dans les pays en développement. Université de Sherbrooke.
- **6. Bellaoueur**, **A.**, & **Menani**, **M. R.** (2008). Etude hydrogéologique des eaux souterraines de la région de Ouargla Soumise à la remontée des eaux de la nappe phréatique et Perspectives de solutions palliatives (Sahara Nord-Est Septentrional-Algérie). *Mémoire de Magister*, 146.
- 7. **Benmihoub, A., & Bedrani, S.** (2012). L'attitude des irrigants vis-à-vis de l'augmentation du tarif de l'eau : cas d'un périmètre d'irrigation public en Algérie.
- **8. Bied-Charreton, M.** (2002). Le système aquifère du Sahara septentrional : une conscience de bassin. Rapport sur la désertification en Afrique : Versailles, Saint-Quentin.
- **9. Bouchemal, F., Bouchahm, N., & Achour, S. (2011).** Qualité des eaux des nappes aquifères de la région de BISKRA. Revue des Sciences Fondamentales et Appliquées, 3(1), 34-44.
- 10. BP. (2018). BP Statistical review of the world energy.67th ed. 56p. Juin 2018.
- 11. Bruno Molle, Cyril Dejean, Daniel Colin, Jean-Marc Deumier, & Marsac, S. (2014). Gagner en performance avec son matériel d'irrigation. Paper presented at the Colloque au champ. Irrigation 2014 Le Magneraud.

 "http://www.arvalisinstitutduvegetal.fr/_plugins/WMS_BO_Gallery/page/getElementStream.jspz?id=26274&prop=file>"http://www.arvalisinstitutduvegetal.fr/_plugins/WMS_BO_Gallery/page/getElementStream.jspz?id=26274&prop=file>"http://www.arvalisinstitutduvegetal.fr/_plugins/WMS_BO_Gallery/page/getElementStream.jspz?id=26274&prop=file>"http://www.arvalisinstitutduvegetal.fr/_plugins/WMS_BO_Gallery/page/getElementStream.jspz?id=26274&prop=file>"http://www.arvalisinstitutduvegetal.fr/_plugins/WMS_BO_Gallery/page/getElementStream.jspz?id=26274&prop=file>"http://www.arvalisinstitutduvegetal.fr/_plugins/WMS_BO_Gallery/page/getElementStream.jspz?id=26274&prop=file>"http://www.arvalisinstitutduvegetal.fr/_plugins/WMS_BO_Gallery/page/getElementStream.jspz?id=26274&prop=file>"http://www.arvalisinstitutduvegetal.fr/_plugins/WMS_BO_Gallery/page/getElementStream.jspz?id=26274&prop=file>"http://www.arvalisinstitutduvegetal.fr/_plugins/WMS_BO_Gallery/page/getElementStream.jspz?id=26274&prop=file>"http://www.arvalisinstitutduvegetal.fr/_plugins/WMS_BO_Gallery/page/getElementStream.jspz?id=26274&prop=file>"http://www.arvalisinstitutduvegetal.fr/_plugins/WMS_BO_Gallery/page/getElementStream.gs/"http://www.arvalisinstitutduvegetal.fr/_plugins/WMS_BO_Gallery/page/getElementStream.gs/"http://www.arvalisinstitutduvegetal.fr/_plugins/WMS_BO_Gallery/page/getElementStream.gs/"http://www.arvalisinstitutduvegetal.fr/_plugins/WMS_BO_Gallery/page/getElementStream.gs/"http://www.arvalisins.fr/_plugins/WMS_BO_Gallery/page/getElementStream.gs/"http://www.arvalisins.gs/"http://www.arvalisins.gs/"http://www.arvalisins.gs/"http://www.arvalisins.gs/"http://www.arvalisins.gs/"http://www.arvalisins.gs/"http://www.arvalisins.gs/"

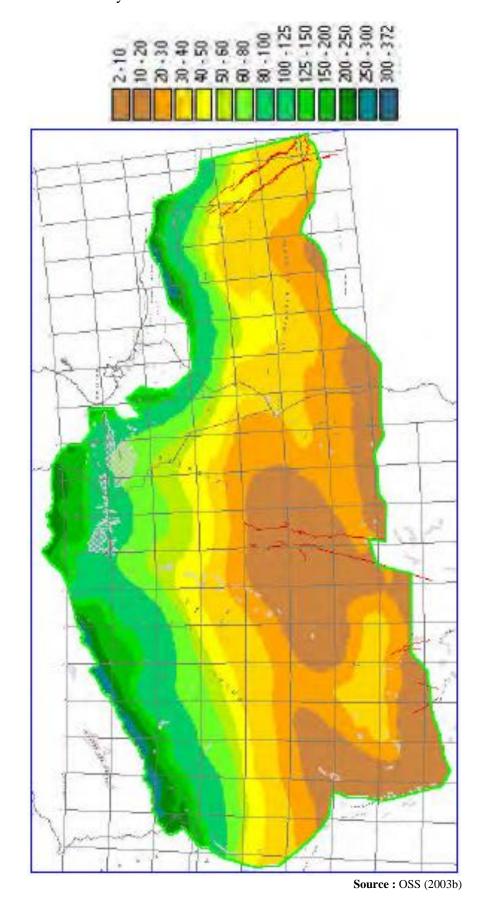
- **12.** Capik, M., Osman Yılmaz, A., & Cavusoglu, İ. (2012). Hydropower for sustainable energy development in Turkey: The small hydropower case of the Eastern Black Sea Region. *Renewable and Sustainable Energy Reviews*, 16(8), 6160-6172. doi: http://dx.doi.org/10.1016/j.rser.2012.06.005
- 13. CASTORO. (2008). Etude et réalisation de 9 forages dans la région d'Oued Righ. Document technique ONID. Consortium de sociétés italienne spécialisés dans la réalisation de forage.
- **14. CDARS. (1999a).** Etude du Plan Directeur Général de Développement des Régions Sahariennes. Lot 1 : Etudes de base Phase II A3 : Monographies spécialisées des ressources naturelles. Ressources en eau. Volume 1 : Connaissances d'ensemble (BNEDER, BRLi ed., Vol. 1, pp. 01-05).
- **15. CDARS. (1999b).** Etude du Plan Directeur Général de Développement des Régions Sahariennes. Lot 1 : Etudes de base. Phase II A3 : Monographies spécialisées des ressources naturelles. Ressources en eau. Volume 2 : Modélisation du Continental Intercalaire (BNEDER, BRLi ed., Vol. 2, pp. 03-12).
- **16. CDARS. (1999c).** Etude du Plan Directeur Général de Développement des Régions Sahariennes. Lot 1 : Etudes de base. Phase II : Synthèse et croisement des connaissances (BNEDER, BRLi ed., pp. 01-21).
- 17. CEA. (2002). L'énergie. Des sources naturelles aux enjeux de la production. Livret énergie. 20p. Commissariat à l'énergie atomique et aux énergies alternatives. CEA, 2002.
- **18. Chandrasekharam, D. (2000).** Geothermal energy resources of India: country update. In: Proceeding of world geothermal congress. Kyushu-Tohoku, Japan; 28 May–10 June 2000.
- 19. Christophe C., (2020). Etude de l'équation de combustion de la combustion complète d'un hydrocarbure appliquée à la dépollution moteur. [En ligne]. Consulté le 12/02/2020. Disponible sur https://www.econologie.com/emissions-co2-litre-carburant-essence-diesel-ou-gpl/
- 20. Declaye, S., Gendebien, S., & Lemort, V. (2016). Les échanges de chaleur.
- 21. **Dehina, K., & Mokhtari, A.** (2012). Simulation numérique d'un échangeur air-sol-eau à co-courant. XXXe Rencontres AUGCIBPSA, Chambéry, Savoie, 9p, Vol 6.
- **22. Dubief, J.** (1953). Essai sur l'hydrologie superficielle au Sahara : Gouvernement général de l'Algérie, Direction du service de la colonisation et de l'hydraulique. Service des études scientifiques
- **23. Dubost, D. (2002).** Ecologie, Aménagement et développement Agricole des oasis algériennes. Ed Centre de recherche scientifique et technique sur les régions arides. Thése Doctorat. 423 p.

- **24. Etsouri, S.** (2008). Etude d'adaptation d'une turbine aux forages albiens pour une autosuffisance en énergie électrique. Magistère. INA.
- **25. Etsouri, S., Kaci, F., & Bouaziz, M.** (2018). Albian drilling's and its hydropower potential in Algeria: Study and exploitation. *Ingeniería e Investigación*, 38(1), 8-15. doi: 10.15446/ing.investig.v38n1.64966
- **26. Ferhat Y. (2014).** Algérie Le gouvernement renonce aux centrales hydroélectriques. Article journal en ligne « Maghreb Emergent ». Article du 09/07/2014.
- 27. **Ferreira, J. H. I., Camacho, J. R., Malagoli, J. A., & Júnior, S. C. G. (2016).** Assessment of the potential of small hydropower development in Brazil. Renewable and Sustainable Energy Reviews, 56, 380-387. doi: http://dx.doi.org/10.1016/j.rser.2015.11.035
- **28. GEA. (2018).** Capacité hydroélectrique dans le monde en 2018, selon les pays. [En ligne], consulté le 30/03/2020. Disponible sur < https://fr.statista.com/statistiques/753571/capacite-puissance-hydroelectrique-selon-le-pays-monde/>.
- 29. Google. (2020). Photo satellitaire Google Earth ®. Photo extraite en Avril 2020.
- **30.** Gonçalvès, J., Petersen, J., Deschamps, P., Hamelin, B., & Baba-Sy, O. (2013). Quantifying the modern recharge of the «fossil» Sahara aquifers. Geophysical Research Letters, 40(11), 2673-2678. doi: 10.1002/grl.50478
- 31. Hamiche, A. M., Stambouli, A. B., & Flazi, S. (2015). A review on the water and energy sectors in Algeria: Current forecasts, scenario and sustainability issues. Renewable and Sustainable Energy Reviews, 41, 261-276. doi: 10.1016/j.rser.2014.08.024
- **32. Hellal, F., & Ourihane, D.** (2004). Etude hydrogéologique du Continental Intercalaire et du Complexe Terminal de la région de Touggourt. Aspect hydro-chimique et problèmes techniques posés. (Ingénieur), USTHB, Alger.
- **33. IEA.** (2019). Key World energy Statistics 2019. Paris: IEA (International Energy Agency).
- **34. Jain, S. V., & Patel, R. N. (2014).** Investigations on pump running in turbine mode: A review of the state-of-the-art. Renewable and Sustainable Energy Reviews, 30, 841-868. doi: http://dx.doi.org/10.1016/j.rser.2013.11.030
- 35. Khadraoui, A. (2006). Eaux et sols en Algérie. Gestion et impact sur l'environnement. ANRH.
- 36. Le nir M., & Monition L. (1982). Microcentrales hydroélectriques. Aménagement et Nature.
- **37. Magdelaine C. (2017).** L'hydroélectricité, les barrages hydroélectriques. [En ligne]. Disponible sur https://www.notre-planete.info/ecologie/energie/hydroelectricite.php. Consulté le 28/01/2020.

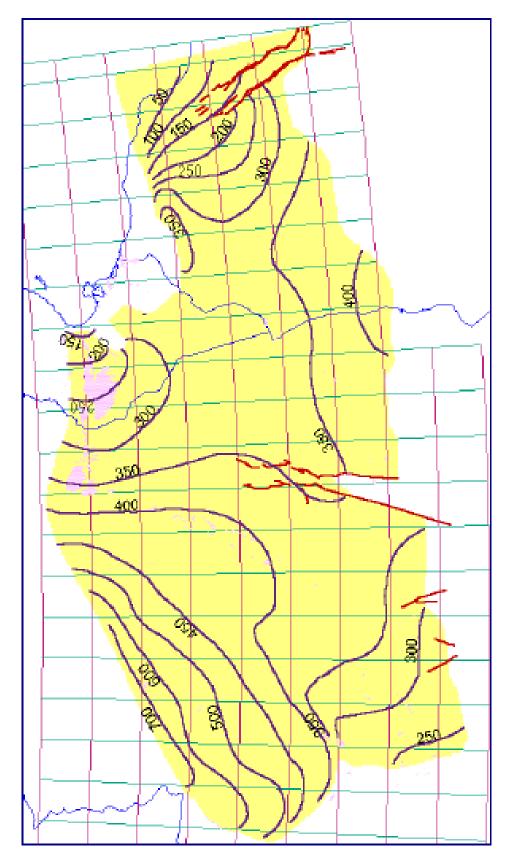

- **38. Manders, T. N., Höffken, J. I., & van der Vleuten, E. B. A. (2016).** Small-scale hydropower in the Netherlands: Problems and strategies of system builders. Renewable and Sustainable Energy Reviews, 59, 1493-1503. doi: http://dx.doi.org/10.1016/j.rser.2015.12.100
- **39. Margat, J. (2008).** Exploitations et utilisations des eaux souterraines dans le monde. Coédition : UNESCO et BRGM, 52p.
- **40. Morcos, S. M., & Mikhail, S. (1986).** Model Tests of Schneider Turbine for Low‐ Head Hydropower Plant. *Journal of Energy Engineering, 112*(3), 185-198. doi: doi:10.1061/(ASCE)0733-9402(1986)112:3(185)
- 41. Mottet, É., & Lasserre, F. (2014). Géopolitique des aménagements hydroélectriques des affluents du Mékong en RDP Lao : développement et intégration régionale. Canadian Journal of Development Studies/Revue canadienne d'études du développement, 35(4), 522-538.
- **42. MRNC. (2004a).** Analyse de projets de petite centrale hydroélectrique. Centre d'aide à la décision sur les énergies propres. Ministère des Ressources Naturelles du Canada. www.retscreen.net. ISBN: 0-662-75476-X.
- **43. MRNC.** (2004b). Modèle pour projets de petite centrale hydroélectrique. RETScreen® Manuel de l'utilisateur en ligne. Centre d'aide à la décision sur les énergies propres. Ministère des Ressources Naturelles du Canada. www.retscreen.net. ISBN: 0-662-77236-9.
- **44. MRNC. (2006).** Analyse de projets d'énergies propres : Manuel d'ingénierie et d'étude de cas RETScreen®. 3ème édition. Centre d'aide à la décision sur les énergies propres. Ministère des Ressources Naturelles du Canada. www.retscreen.net. ISBN : 0-662-78865-6.
- **45. Nautiyal, H., Singal, S. K., Varun, & Sharma, A. (2011).** Small hydropower for sustainable energy development in India. *Renewable and Sustainable Energy Reviews, 15*(4), 2021-2027. doi: http://dx.doi.org/10.1016/j.rser.2011.01.006
- **46. Nesson, C.** (1978). L'évolution des ressources hydrauliques dans les oasis du Bas-Sahara algérien.
- 47. Odru, P. (2010). Le stockage de l'énergie (1ère ed.) : Dunod.
- **48. Okot, D. K. (2013).** Review of small hydropower technology. Renewable and Sustainable Energy Reviews, 26, 515-520. doi: http://dx.doi.org/10.1016/j.rser.2013.05.006
- **49. ONU. (2001).** L'eau, ressource essentielle du développement durable. Rapport du Secrétaire général de l'ONU Conseil économique et social. Commission du développement durable. Comité préparatoire du Sommet mondial du développement durable du 30 avril au 02 mai 2001. Session d'organisation. 2001.
- **50. OSS.** (2001). Les ressources en eau des pays de l'Observatoire du Sahara et du Sahel : Evaluation, Utilisation et Gestion. UNESCO-OSS (pp. 88): Tunisie.

- **51. OSS. (2003a).** Système Aquifère du Sahara septentrional : Une conscience d'un bassin.: *Vol. II. Hydrogéologie* (2ème ed., pp. 322). Tunis.
- **52. OSS. (2003b).** Système aquifère du Sahara septentrional : Gestion commune d'un bassin transfrontière. Rapport de Synthèse (1ère ed., pp. 148): Tunis.
- **53. OSS. (2008).** Système Aquifère du Sahara Septentrional (Algérie, Tunisie, Libye). Gestion concertée d'un bassin transfrontalier. *Collection Synthèse* $n^{\circ}I$., 48.
- **54. Ouali, S., Benaïssa, Z., Belhamel, M., Khellaf, A., Baddari, K., & Djeddi, M. (2011).** Impact of Integrated Clean Energy on the Future of the Mediterranean Exploitation of albian geothermal water in South Algeria. Energy Procedia, 6, 101-109. doi: http://dx.doi.org/10.1016/j.egypro.2011.05.012
- 55. Ouali, S., Khellaf, A., & Baddari, K. (2006). Etude géothermique du Sud de l'Algérie. Revue des énergies renouvelables, 9(4), 297-306.
- **56. Oussedik, S. M.** (2001). Déminéralisation de l'eau saumâtre du forage Albien "Aïn Sahara" pour l'alimentation en eau potable de la ville de Touggourt. *Desalination*, 137(1–3), 103-111. doi: http://dx.doi.org/10.1016/S0011-9164(01)00208-9
- 57. **Perrin, J.-A.** (2015). Hydroélectricité et continuité écologique des cours d'eau : analyse croisée des conflits et représentations liées à l'environnement et à l'énergie.
- **58. PNUD-UNESCO.** (1972). Etude des ressources en eau du Sahara Septentrional. Rapport sur les résultats du projet Reg 100. UNESCO, Paris, 78p.
- **59. Pugliese, F., De Paola, F., Fontana, N., Giugni, M., & Marini, G. (2016).** Experimental characterization of two Pumps As Turbines for hydropower generation. Renewable Energy, 99, 180-187. doi: http://dx.doi.org/10.1016/j.renene.2016.06.051
- **60. Reddy VR, Utto JI, Frans DR, Matin N., (2006).** Achieving global environment benefits through local development of clean energy the case of hilly hydel in India. Energy Policy 2006;34:4069–80.
- **61. Sachdev, H. S., Akella, A. K., & Kumar, N. (2015).** Analysis and evaluation of small hydropower plants: A bibliographical survey. Renewable and Sustainable Energy Reviews, 51, 1013-1022. doi: http://dx.doi.org/10.1016/j.rser.2015.06.065
- **62. Saibi, H. (2009).** Geothermal resources in Algeria. Renewable and Sustainable Energy Reviews, 13(9), 2544-2552. doi: http://dx.doi.org/10.1016/j.rser.2009.06.019
- **63. Salem A. (2001).** La demande en eau dans le Sahara Septentrional algérien. Observatoire du Sahara et Du Sahel (OSS), Avril 2001.

- **64.** Schwartz, F, Pegallapati, R, Shahidehpour, M., (2005). Small hydro as green power. In: Proceedings of IEEE power engineering society general meeting. 2005. Vol. 2, p. 2050–57.
- **65. Seasholes, K., & DeVoil, R. (1998).** Basic Botany, Physiology, and Environmental Effects on Plant Growth. Environmental Factors That Affect Plant Growth (pp. 01-44). Retrieved from http://ag.arizona.edu/pubs/garden/mg/botany/index.html.
- 66. Sourisseau, J.-M. (2014). Agricultures familiales et mondes à venir : Editions Quae.
- **67. Weiland, P. (2013).** Production de biogaz par les exploitations agricoles en Allemagne. Sciences Eaux & Territoires (3), 14-23.
- 68. Zahm, F., Ugaglia, A. A., Boureau, H., D'Homme, B., Barbier, J., Gasselin, P., Manneville, V. (2015). Agriculture et exploitation agricole durables : état de l'art et proposition de définitions revisitées à l'aune des valeurs, des propriétés et des frontières de la durabilité en agriculture. *Innovations Agronomiques*, 46, 105-125.


Annexes

ANNEXE 1 - carte du Sahara Septentrional


Source : OSS (2003b)

ANNEXE 2 - Carte des isohyètes du SASS en mm/an

99

ANNEXE 3 - Carte piézométrique de référence du CI

Source : OSS (2003b)

ANNEXE 4 - Forages recensés avec tous les paramètres utiles.

Code	Nom	Wilaya	Longitude	Latitude	Année de Réalisation	Usage	Altitude	Débit exploitable (I/s)	Résidus Secs (mg/l)	Pression (bar)	Température (°C)	État
F1	El Ouajda	Adrar	00°14'29"	29°10'17"	1992	AEP	302		2560	27		Exploité
F2	Ain Salah	Ain Salah	02°26'28"	27°10'55"	1992	AEP	263	100	2610			Exploité
F3	Ain Salah	Ain Salah	02°30'39"	27°15'13"	1985	AEP	256	90	2204			Exploité
F4	Foggarat EZO 1	Adrar	02°39'56"	27°17'16"	1987	IRR	296		2010			Exploité
F5	Foggarat EZO 2	Adrar	02°46'32"	27°12'29"	1982	MXTE	287	100	1640			Exploité
F6	Gouiret Moussa 2	Ghardaïa	03°27'29"	31°05'26"	1987	IRR	376			3		Exploité
F7	Ntissa 2	Ghardaïa	03°39'06"	32°26'57"		IRR	476	15,5				Exploité
F8	Houtia 2	Ghardaïa	03°43'00"	31°43'29"		IRR	406	50				Exploité
F9	Oued Metlili 3	Ghardaïa	03°48'09"	32°17'03"		IRR	450	14,5				Exploité
F10	HASSI BERKANE 1 (HB1)	Ouargla	04°21'40"	31°00'12"	1961	IND	240,5	50				Exploité
F11	Ain Zana 101 (ANZ-101)	Ghardaïa	04°28'19"	32°07'50"	1975	IRR	192	83				Exploité
F12	Tafziouine	Ghardaïa	04°28'58"	32°44'09"		IRR	310	40				Exploité
F13	Dait Remt 101 (DR-101)	Ouargla	04°39'40"	31°25'18"	1960	IND	237,4	67		25,5		Exploité
F14	Oued M'ya (Remta - OMYA 101)	Ouargla	04°43'29"	31°51'52"	1976	IRR	250	40				Exploité
F15	Sidi Khaled 1	Biskra	04°58'48"	34°23'57"	1981	AEP				1		Exploité
F16	OKMH 89	Ouargla	05°02'03"	31°50'43"	1990	IND	202	20				Exploité
F17	OKNH A1	Ouargla	05°02'35"	31°49'24"	1997	IND	196	27				Exploité
F18	OKJH A1	Ouargla	05°02'56"	31°50'09"	1993	IND	203	10				Exploité
F19	OKJH A3	Ouargla	05°03'09"	31°51'26"	1994	IND	224	35				Exploité
F20	ОКЈН А2	Ouargla	05°03'44"	31°50'00"	1993	IND	210	26				Exploité
F21	OKJH A4	Ouargla	05°04'55"	31°51'15"	1995	IND	221	25				Exploité
F22	GLAH-A4	Ouargla	05°11'34"	31°58'53"	1993	IND	206	12				Exploité
F23	ОКРН-А5	Ouargla	05°13'09"	31°45'00"	1997	IND	193	34				Exploité
F24	GLAH-A3	Ouargla	05°13'09"	31°58'29"	1993	IND	202	14				Exploité
F25	GLAH-A2	Ouargla	05°13'14"	31°57'16"	1993	IND	189	10				Exploité
F26	OKPH-A1	Ouargla	05°13'19"	31°45'44"	1992	IND	213	35				Exploité
F27	ОКРН-А4	Ouargla	05°13'47"	31°44'04"	1995	IND	202	28				Exploité
F28	OKT-06	Ouargla	05°13'50"	31°43'11"	1968		179,9					Exploité
F29	OKPH-A2	Ouargla	05°14'16"	31°45'41"	1993	IND	188	28				Exploité
F30	OKP-24	Ouargla	05°15'28"	31°47'05"	1966	_	219,1					Exploité
F31	Forage Albien Sokra	Ouargla	05°19'22"	31°56'26"	1979	MXTE	149					Exploité

F32	Guellala NE4	Ouargla	05°19'40"	32°02'21"								Exploité
F33	El Bour ELB EBR1	Ouargla	05°20'12"	32°09'35"	1982	IRR	142,73					Exploité
F34	Guellala Nord-Est 3	Ouargla	05°20'14"	32°03'19"	1990	IND	_ :=,: 0					Exploité
F35	Guellala NE	Ouargla	05°20'34"	32°03'19"	1977							Exploité
F36	Albien El Khefif	Ouargla	05°21'17''	32°26'20''	1991	IRR	122	120				Exploité
F37	El H'deb I (Bousmaha saAlbien) OA5	Ouargla	05°22'08"	31°55'44"		MXTE		98				Exploité
F38	El H'deb II (Hmidi HoAlbienne)	Ouargla	05°22'20"	31°55'30"		MXTE		105				Exploité
F39	F. Albien Daiet Tarfa Chegga	Ouargla	05°26'18"	32°43'01"	1975	IRR						Exploité
F40	H.Ben Abdellah Albien/3PITONS		05°27'53''	32°01'26''	1961	IRR	158	360		19		Exploité
	H.B.A III / à coté Babziz à côté de				1990			150		25		Exploité
F41	OA4	Ouargla	05°27'56"	31°59'54"		IRR	165			23		
F42	Albien 04	Ouargla	05°28'00"	31°01'00"	1974	MXTE	182					Exploité
F43	Albien El Mir Hadjira	Ouargla	05°30'03"	32°39'47"	1986	MXTE	132	150	1842			Exploité
F44	Albien SEMPAC	Ouargla	05°30'08"	32°02'56"	1990	IRR	147,88	540	1740	24		Exploité
F45	H.Guenifida HGF1 Khch.Erih	Ouargla	05°33'18"	32°08'18"	1980	IRR	167,8	198	1710			Exploité
F46	Albien M'rara N°5	El Oued	05°37'48"	33°28'14"	1988	IRR	121	120	1644			Exploité
F47	Khechem E'Rih 1 (CDARS)	Ouargla	05°38'56"	32°15'32"	1996	IRR	137	200	2267	9,5		Exploité
F48	Albien M'rara N°4	El Oued	05°38'56"	33°29'00"	1988	IRR	110	120	1632			Exploité
F49	Tamerna 1 (TA-1)	Ouargla	05°39'47"	33°25'15"		IND	69					Exploité
F50	Albien M'rara N°3	El Oued	05°39'53"	33°30'21"	1974	IRR	115	110	1726			Exploité
	Albien M'rara N°1 AEP Château											
F51	M'Rara	El Oued	05°40'00"	33°28'00"	1974	AEP	113	110	1784			Exploité
F52	Albien Guedachi Hadjira	Ouargla	05°41'27"	32°34'33"	1989	MXTE	140	200	1914			Exploité
F53	Albien M'rara N°2	El Oued	05°42'00"	33°29'00"	1974	IRR	116	115	1850			Exploité
F54	Khchem Erih GCA F3		05°43'03"	32°16'50"	2002		136,5	207				Exploité
F55	MDHA-6	Ouargla	05°48'50"	31°41'39"	1999	IND	161	6,25	2168	12,5		Exploité
F56	MDH A6	Ouargla	05°48'58"	31°42'16"	1996	IND	118					Exploité
F57	OMMH -104 Bis	Ouargla	05°50'53"	31°46'55"	1982	IRR	150	1,5	2670	9,2		Exploité
F58	OMM 852	Ouargla	05°52'03"	31°47'03"	1985	IND						Exploité
F59	OMN 17	Ouargla	05°52'40"	31°48'22"	1958		139.25					Exploité
F60	OMN 13	Ouargla	05°52'49"	31°45'30"	1962	IND	173,44					Exploité
F61	Soviétique D1bis F3	El Oued	05°53'12"	34°17'13"	1970	IRR	8	38				Exploité
F62	COMAFOR D1bis F1	El Oued	05°53'48"	34°16'59"	1961	IRR	15,44	36				Exploité
F63	Soviétique D1bis F2	El Oued	05°54'06"	34°17'25"	1967	IRR	11	40				Exploité
F64	CDARS RN3	El Oued	05°54'15"	34°13'58"	1997	IRR	15	20				Exploité
F65	Albien Ain Khadra Albien1 SM4	El Oued	05°54'37"	33°58'10"	1998	IRR	3,58	320		18,6	63	

F66	AEP Still D1bis F6	El Oued	05°54'46"	34°15'48"	1988	IRR	l 4	36	ĺ		Ì	Exploité
F67	Soviétique D1bis F4	El Oued	05°55'01"	34°15'17"	1970	IRR	14	36				Exploité
F68	Albien Malha G.C.A	El Oued	05°55'06''	33°36'34"	2007	IRR	120	120		13,2	53	Exploité
F69	Albien Aïn Abane Albien2 SM4	El Oued	05°55'13"	33°59'18"	1998	IRR	-11,14	120		13,2	33	Exploité
F70	Albien ONID	El Oued	05°55'43"	33°50'40"	2007	IRR	13	120				Exploité
F71	OMNH A1	Ouargla	05°55'54"	31°46'09"	1993	IND	170,5	112,5		12,5		Exploité
F72	Krikeb Salah D1bis F5	El Oued	05°55'59"	34°15'18"	1987	IRR	0	25				Exploité
F73	OMNH A4	Ouargla	05°56'10"	31°48'46"	1994	IND	168,4	126,67	2156	13		Exploité
F74	OMJ 51	Ouargla	05°56'12"	31°19'32"	1964		142.73					Exploité
F75	OMNH A2	Ouargla	05°56'19"	31°47'25"	1996	IND	170,5	122,92		13		Exploité
F76	Albien Tarfaiet Saleh Albien2 SM3	El Oued	05°56'29"	33°56'47"	1997	IRR	-0,16	356	1902	18,4	63	Exploité
F77	Albien SEBBALA 1 SM3	El Oued	05°56'51"	33°58'17"	1998	IRR	-4,1	310	1892	27	65	Exploité
F78	MDH 113	Ouargla	05°56'53"	31°38'07"	1980	IND	150	75				Exploité
F79	Albien SEBBALA Albien1 SM5	El Oued	05°57'00"	33°58'54"	1999	IRR	-17	294	1670	22,75	63	Exploité
F80	HGAHA-1	Ouargla	05°57'13"	31°27'21"	1999	IND		7,416666667		17,9		Exploité
F81	OMNH A3	Ouargla	05°57'49"	31°46'50"	1994	IND	168,4	128,33		12,6		Exploité
F82	Krikeb Salah D1bisF8	El Oued	05°58'08"	34°15'14"	1996	IRR	0	50				Exploité
F83	Albien Dendouga Albien3 SM3	El Oued	05°58'15"	33°57'24"	1998	IRR	-24,03	350		16,5	64	Exploité
F84	Tamerna 2 - Choucha	El Oued	05°58'18"	33°26'01"	1975		59,8					Exploité
F85	Albien N° 3 CHOUCHA	El Oued	05°58'20"	33°26'04"	1981	AEP	62	120	1648	14	54,1	Exploité
F86	Albien Mazer Albien 3 SD10	El Oued	05°58'34"	33°34'47''	1999	IRR	38,55	120	1690		54	Exploité
F87	Albien Djamaa 3 (D13 F3)	El Oued	05°58'55"	33°32'54''	1980	AEP	43	130	1992		52,3	Exploité
F88	OMOH A1	Ouargla	05°59'08"	31°47'54"	1993	IND	168,5	88,33		11,5		Exploité
F89	OMKH A1	Ouargla	05°59'11"	31°49'14"	1994	IND	173	7,33	2122	10,2		Exploité
F90			05°59'24''	32°57'05''	1984	AEP		120	1792			Exploité
F91	Albien Blidet Amor	Ouargla	05°59'24"	32°57'05"	1984	AEP	168	120			44,4	Exploité
F92	Albien TemaAlbienne D41 F	Ouargla	05°59'35"	32°59°49"	2010	AEP	82			17	56,3	Exploité
F93	MD 28	Ouargla	06°00'01"	31°37'11"	1959	IND	165					Exploité
F94	Albien ONID Tinedla	El Oued	06°00'03"	33°41'22"	2007	IRR	16	215		23,85		Exploité
F95	ОМОН А4	Ouargla	06°00'14"	31°45'31"	1993	IND	169,6	82,92		11,5		Exploité
F96	OMOH A2	Ouargla	06°00'43"	31°46'50"	1993	IND	168,5	70,83		12		Exploité
F97	Albien ONID	El Oued	06°01'41"	33°40'06"				120				Exploité
F98	Albien Tigdidine Albien1 SD7	El Oued	06°01'44"	33°31'36''	1997	IRR	33,7	186	1720	15,8	56	Exploité
F99	ОМОН АЗ	Ouargla	06°01'51"	31°45'16"	1993	IND	169,6	60,42		11,8		Exploité
F100	MD-55	Ouargla	06°01'55"	31°38'32"	1979	IND	168,5	25	2706	13,8		Exploité

FIOLO CAMO-56	F101	MDH A4	Ouargla	06°02'11"	31°39'47"	1996	IND	155	9,25	1788	13,5		Exploité
Ablen Nouveau Rimal 3													'
Fig. Composition Composi						1				1030	11,2		·
Fig. AP de Touggourt Touggourt Octo2-49" 33°04'06" 1975 AFP 89,83 100					+								•
FLOC C.F.P.A. H2													·
F107 Albien Ain Sahara (A.S.A.1) Touggourt 06'02'54" 33'04'27" 1978 AEP 60,7 150 54,6 Exploité F108 Oued El Meràao/EMI Metmata Ouargla 06'02'56" 32'24'12" 1975 IRR 118,5 75 Exploité Exploité F109 H-16'8 Ouargla 06'03'05" 31'13'16" 1979 IND 165 2.5 1728 12,5 Exploité Exploité F110 Albien AGID (Ghamra) Touggourt 06'03'15" 33"13'40" 2006 IRR 61					+	1975	ALI	89,83	100				'
F108 Oued El Mer\u00e3a0EM1 Metmata Ouargla O6'02'56" 32'24'12" 1975 IRR 118.5 75						1079	ΛFD	60.7	150			54.6	-
F109 H1-Bis Ouargla O6'03'05" 31'47'16" 1979 IND 165 2.5 1728 12,5 Exploité Exploité F110 Albien AGID (Ghamra) Touggourt O6'03'12" 33'12'40" 2006 IRR 61 61 61 61 61 61 61		·			+			,				34,0	
Filio Albien AGID (Ghamra) Touggourt 06'03'15" 33'13'40" 2006 IRR 61 61 67.5 61.5 6										1728	12 5		
H1UP1									2,3	1,20	12,3		
Filia Albien Sidi Amrane D16 F El Oued 06'03'55" 33'30'17" 1997 AEP 26 332 1836 5,75 56,5 Exploité		·				2000	IIXIX						'
F113 MDH A5 Ouargla O6'04'05" 31'39'51" 1997 IND 162 41,67 1838 13,2 Exploité F114 Albien de Megarine D30 F1 Touggourt O6'04'38" 33'11'24" 1981 AEP 202 150 1960 57,4 Exploité F115 Albien Centre Indust 102 Ouargla O6'04'45" 31'43'04" 1975 IND		-			+	1007	ΛFD		227	1836	5 75	56.5	· ·
Filia Albien de Megarine D30 F1 Touggourt O6'04'38" 33'11'24" 1981 AEP 202 150 1960 57.4 Exploité Exploité Filia Albien Centre Indust 102 Ouargia O6'04'45" 31'43'04" 1975 IND						1						30,3	'
Filist Albien Centre Indust 102 Quargla Q6"04"45" 31"43"04" 1975 IND IND 140,3 66,69999695 2722 17 Exploité Filist MDH 115 Quargla Q6"05"10" 31"39"13" 1981 IND 140,3 66,69999695 2722 17 Exploité Filist OML-12 Quargla Q6"05"42" 31"49"52" 1980 IRR 162 1,166666667 13 Exploité Exploité Filist OMLHA-1 Quargla Q6"05"42" 31"49"52" 1999 IND 157 G6,25 2148 13 Exploité Exploité Filist Albien III D34 bis FA3 - SIDI MAHDI 3 Touggourt Q6"06"33" 33"02"43" 1992 AEP 120 S5,9 Exploité Exploité Filist Albien III D34 bis FA3 - SIDI MAHDI 2 Touggourt Q6"06"12" 33"03"27" 1974 AEP 89,8 150 S7 Exploité Exploité Exploité Filist Albien AGID (Sidi Mahdi) Touggourt Q6"06"35" 33"03"29" 2007 IRR 91 S7 S7 S7 Exploité Exploité Filist Albien AGID (Sidi Mahdi) Touggourt Q6"06"35" 33"03"00" 2007 MXTE G6,5 120 S7 S8,8 Exploité Exploité Filist S7 S8 S8 Exploité Filist S8 S8 S8 S8 S8 S8 S8 S		-									13,2	57./	'
File MDH 115						1		202	150	1500		37,4	•
F117 OML-12 Ouargla O6°05'42" 31°49'51" 1980 IRR 162 1,166666667 13 Exploité F118 OMLHA-1 Ouargla O6°05'45" 31°49'52" 1999 IND 157 6,25 2148 13 Exploité F119 Albien III D34 bis FA3 - SIDI MAHDI 2 Touggourt O6°06'03" 33°02'43" 1992 AEP 120 55,9 Exploité F120 Albien II D34 bis FA3 - SIDI MAHDI 2 Touggourt O6°06'12" 33°03'27" 1974 AEP 89,8 150 58,7 Exploité F121 Albien AGID (Sidi Mahdi) Touggourt O6°06'15" 33°03'29" 2007 IRR 91								1//0 3	66 69999695	2722	17		
F118 OMLHA-1 Ouargla 06°05'45" 31°49'52" 1999 IND 157 6,25 2148 13 Exploité F119 Albien III D34 bis FA3 - SIDI MAHDI 3 Touggourt 06°06'03" 33°02'43" 1992 AEP 120 190 55,9 Exploité F120 Albien II D34 bis FA2 - SIDI MAHDI 2 Touggourt 06°06'12" 33°03'29" 2007 IRR 91 180 58,7 Exploité F121 Albien AGID (Sidi Mahdi) Touggourt 06°06'33" 33°03'09" 2007 IRR 91 15,8 58,8 Exploité F122 Albien Nouveau AGID Sidi Mahdi Touggourt 06°06'38" 33°17'43" 1975 MXTE 61,6 100 15,8 58,8 Exploité F123 Sidi Slimane II D25 F2 Touggourt 06°06'41" 31°45'05" 1995 IND 167 26,38 Exploité F124 OMPH A12 Ouargla 06°06'41" 31°45'05" 1995 IND 167 <t< td=""><td></td><td></td><td></td><td></td><td>+</td><td>t</td><td></td><td></td><td></td><td>2722</td><td></td><td></td><td>,</td></t<>					+	t				2722			,
F119 Albien III D34 bis FA3 - SIDI MAHDI 3 Touggourt 06°06'03" 33°02'43" 1992 AEP 120 55,9 Exploité F120 Albien II D34 bis FA2 - SIDI MAHDI 2 Touggourt 06°06'12" 33°03'27" 1974 AEP 89,8 150 58,7 Exploité F121 Albien AGID (Sidi Mahdi) Touggourt 06°06'13" 33°03'29" 2007 IRR 91 55,9 Exploité F122 Albien Nouveau AGID Sidi Mahdi Touggourt 06°06'33" 33°03'00" 2007 MXTE 65 120 15,8 58,8 Exploité F123 Sidi Slimane II D25 F2 Touggourt 06°06'38" 33°17'43" 1975 MXTE 61,6 100 Exploité F124 OMPH A12 Ouargla 06°06'41" 31°45'05" 1995 IND 167 26,38 Exploité F125 Albien Nouveau ONID Touggourt 06°06'41" 31°45'05" 1995 IND 167 26,38 Exploité F126 OMPHA-12 Ouargla 06°06'41" 31°45'05" 1995 IND 168 95 2528 12 Exploité F127 OMPH A13 Ouargla 06°06'57" 31°46'24" 1995 IND 167,3 105,83 2204 12,8 Exploité F128 OMP 35 Bis Ouargla 06°07'12" 31°46'33" 1958 169.11									ŕ	2148			-
F120 Albien II D34 bis FA2 - SIDI MAHDI 2 Touggourt O6°06′12" 33°03′27" 1974 AEP 89,8 150 58,7 Exploité F121 Albien AGID (Sidi Mahdi) Touggourt O6°06′15" 33°03′29" 2007 IRR 91						+		207	· ·			55.9	•
F121 Albien AGID (Sidi Mahdi) Touggourt O6°06'15" 33°03'29" 2007 IRR 91								80 8				, -	'
F122 Albien Nouveau AGID Sidi Mahdi Touggourt O6°06'33" 33°03'00" 2007 MXTE 65 120 15,8 58,8 Exploité F123 Sidi Slimane II D25 F2 Touggourt O6°06'38" 33°17'43" 1975 MXTE 61,6 100 Exploité F124 OMPH A12 Ouargla O6°06'41" 31°45'05" 1995 IND 167 26,38 Exploité Exploité F125 Albien Nouveau ONID Touggourt O6°06'41" 33°17'44" 2007 IRR 91 120 Exploité Exploité F126 OMPHA-12 Ouargla O6°06'41" 31°45'05" 1995 IND 168 95 2528 12 Exploité F127 OMPH A13 Ouargla O6°06'57" 31°46'24" 1995 IND 167,3 105,83 2204 12,8 Exploité F128 OMP 35 Bis Ouargla O6°07'12" 31°46'33" 1958 169.11									130			30,7	•
F123 Sidi Slimane I D25 F2 Touggourt O6°06'38" 33°17'43" 1975 MXTE 61,6 100 Exploité F124 OMPH A12 Ouargla O6°06'41" 31°45'05" 1995 IND 167 26,38 Exploité F125 Albien Nouveau ONID Touggourt O6°06'41" 33°17'44" 2007 IRR 91 120 Exploité F126 OMPHA-12 Ouargla O6°06'41" 31°45'05" 1995 IND 168 95 2528 12 Exploité F127 OMPH A13 Ouargla O6°06'57" 31°46'24" 1995 IND 167,3 105,83 2204 12,8 Exploité F128 OMP 35 Bis Ouargla O6°07'12" 31°46'33" 1958 169.11 F129 MD 79 Ouargla O6°07'33" 31°39'53" 1964 IND 173		· · · · · · · · · · · · · · · · · · ·							120		15.8	58.8	•
F124 OMPH A12 Ouargla 06°06'41" 31°45'05" 1995 IND 167 26,38 Exploité F125 Albien Nouveau ONID Touggourt 06°06'41" 33°17'44" 2007 IRR 91 120 Exploité F126 OMPHA-12 Ouargla 06°06'41" 31°45'05" 1995 IND 168 95 2528 12 Exploité F127 OMPH A13 Ouargla 06°06'57" 31°46'24" 1995 IND 167,3 105,83 2204 12,8 Exploité F128 OMP 35 Bis Ouargla 06°07'12" 31°46'33" 1958 169.11 Exploité F129 MD 79 Ouargla 06°07'33" 31°39'53" 1964 IND 173 Exploité F130 MDH A1 Ouargla 06°07'37" 31°37'43" 1995 IND 142,35 128 14,5 Exploité F131 MD 312 Ouar											13,0	30,0	
F125 Albien Nouveau ONID Touggourt 06°06'41" 33°17'44" 2007 IRR 91 120 Exploité F126 OMPHA-12 Ouargla 06°06'41" 31°45'05" 1995 IND 168 95 2528 12 Exploité F127 OMPH A13 Ouargla 06°06'57" 31°46'24" 1995 IND 167,3 105,83 2204 12,8 Exploité F128 OMP 35 Bis Ouargla 06°07'12" 31°46'33" 1958 169.11 Exploité F129 MD 79 Ouargla 06°07'33" 31°39'53" 1964 IND 173 Exploité F130 MDH A1 Ouargla 06°07'37" 31°37'43" 1995 IND 142,35 128 14,5 Exploité F131 MD 312 Ouargla 06°07'37" 31°43'43" 1995 IND 166,8 117,5 1864 11,7 Exploité F132 OMPH A2						1		,					· ·
F126 OMPHA-12 Ouargla O6°06'41" 31°45'05" 1995 IND 168 95 2528 12 Exploité F127 OMPH A13 Ouargla O6°06'57" 31°46'24" 1995 IND 167,3 105,83 2204 12,8 Exploité F128 OMP 35 Bis Ouargla 06°07'12" 31°46'33" 1958 169.11 IND 173 IND Exploité F129 MD 79 Ouargla 06°07'37" 31°37'43" 1995 IND 142,35 128 14,5 Exploité F130 MDH A1 Ouargla 06°07'37" 31°43'43" 1995 IND 142,35 128 14,5 Exploité F131 MD 312 Ouargla 06°07'37" 31°43'43" 1980 IRR 138,078 7,33 IRR 15,014 11,7 Exploité F132 OMPH A2 Ouargla 06°08'03" 31°44'17" 1995 IND 166,8 117,5 1864 11,7		•			+								•
F127 OMPH A13 Ouargla O6°06'57" 31°46'24" 1995 IND 164,56 T128 IND 164,56 T131 MD16 Ouargla O6°08'31" 31°46'31" 1995 IND 164,56 T15 T16 T178 IND 164,56 T178 T188 T199 T188 T1995 IND 148 T1995 IND 164,56 T1995 IND T										2528	12		•
F128 OMP 35 Bis Ouargla O6°07'12" 31°46'33" 1958 169.11 169.11 Exploité F129 MD 79 Ouargla 06°07'33" 31°39'53" 1964 IND 173 180 14,5 180 14,5 180 14,5 180 14,5 180 14,5 180 18 18 18 18 18 14,5 18						†							·
F129 MD 79 Ouargla O6°07'33" 31°39'53" 1964 IND 173 184 14,5 Exploité F130 MDH A1 Ouargla 06°07'37" 31°37'43" 1995 IND 142,35 128 14,5 Exploité F131 MD 312 Ouargla 06°07'37" 31°43'43" 1980 IRR 138,078 7,33 Exploité F132 OMPH A2 Ouargla 06°08'03" 31°44'17" 1995 IND 166,8 117,5 1864 11,7 Exploité F133 MD18 Ouargla 06°08'21" 31°36'59" 1978 IND 164,56 Exploité F134 MD16 Ouargla 06°08'31" 31°42'24" 1978 IND 148 Exploité							1140		103,03	2204	12,0		
F130 MDH A1 Ouargla 06°07'37" 31°37'43" 1995 IND 142,35 128 14,5 Exploité F131 MD 312 Ouargla 06°07'37" 31°43'43" 1980 IRR 138,078 7,33 Exploité F132 OMPH A2 Ouargla 06°08'03" 31°44'17" 1995 IND 166,8 117,5 1864 11,7 Exploité F133 MD18 Ouargla 06°08'21" 31°36'59" 1978 IND 164,56 Exploité F134 MD16 Ouargla 06°08'31" 31°42'24" 1978 IND 148 Exploité							IND						
F131 MD 312 Ouargla 06°07'37" 31°43'43" 1980 IRR 138,078 7,33 Exploité F132 OMPH A2 Ouargla 06°08'03" 31°44'17" 1995 IND 166,8 117,5 1864 11,7 Exploité F133 MD18 Ouargla 06°08'21" 31°36'59" 1978 IND 164,56 IND Exploité F134 MD16 Ouargla 06°08'31" 31°42'24" 1978 IND 148 IND Exploité						-			128		14 5		-
F132 OMPH A2 Ouargla 06°08'03" 31°44'17" 1995 IND 166,8 117,5 1864 11,7 Exploité F133 MD18 Ouargla 06°08'21" 31°36'59" 1978 IND 164,56 IND Exploité F134 MD16 Ouargla 06°08'31" 31°42'24" 1978 IND 148 IND Exploité											17,5		
F133 MD18 Ouargla 06°08'21" 31°36'59" 1978 IND 164,56 Exploité F134 MD16 Ouargla 06°08'31" 31°42'24" 1978 IND 148 Exploité		-								1864	11 7		
F134 MD16 Ouargla 06°08'31" 31°42'24" 1978 IND 148 Exploité			Ĭ		+			-	117,3	1004	11,/		•
						+							•
	F135	OMPH A1	Ouargla	06°08'42"	31°45'31"	1989	IND	166,5	106,25	2182	12,5		Exploité

F136	MD 432	Ouargla	06°08'47"	31°38'44"	1990	IND	142	18,96		18,5		Exploité
F137	MDH A2	Ouargla	06°08'58"	31°37'42"	1996	IND	146,631	122	1802	15		Exploité
F138	MDH A3	Ouargla	06°09'00"	31°39'03"	1995	IND	176	112,5	2396	14,8		Exploité
F139	MDH A7	Ouargla	06°09'15"	31°39'54"	1963	IRR	155					Exploité
F140	MDH 120	Ouargla	06°09'18"	31°40'10"	1983	MXTE	160	50	2253	8		Exploité
F141	MDHA-7	Ouargla	06°09'18"	31°40'20"	2000	IND	165	41,66666667	1846	12		Exploité
F142	ОМРН60	Ouargla	06°09'20"	31°45'02"			166					Exploité
F143	ОМРН А7	Ouargla	06°10'01"	31°45'00"	1996	IND	137,1	79,17	1854	13,3		Exploité
F144	Bir Latmine 1 (BLE-1)		06°14'30"	33°25'07"	1984	IND	77,91	50				Exploité
F145	Albien Taïbet	Ouargla	06°22'48"	33°06'50"	1989	AEP	111	166	2142		62,8	Exploité
F146	Albien Benacer	Ouargla	06°25'27"	33°06'10"	2009	AEP		120		16,5		Exploité
F147	A9	Ouargla	06°29'04"	30°54'32"	1988	IRR	179	120				Exploité
F148	GT101/SH	Ouargla	06°29'23"	30°27'24"	1962	IND	210	10,42		14		Exploité
F149	A8	Ouargla	06°29'32"	30°53'44"	1987	IRR	175	100	2634			Exploité
F150	GT110/SH	Ouargla	06°30'03"	30°22'32"	1965	IND	213	10,41666667		14		Exploité
F151	GT36/SH	Ouargla	06°30'13"	30°17'25"	1966	IND	218	10,41666667		13,1		Exploité
F152	A6	Ouargla	06°30'28"	30°52'08"	1987	IRR	180	110				Exploité
F153	H.M SNREPAL	Ouargla	06°42'06"	31°40'23"	1957	MXTE	140					Exploité
F154	GEA2/SH	Ouargla	06°45'23"	30°43'34"								Exploité
F155	Albien N°3	Ouargla	06°47'10"	31°10'19"	1962	MXTE						Exploité
F156	MDR21/SH	Ouargla	06°47'24"	31°10'57"	1990	IND	162	12	3622	16		Exploité
F157	MDR6/SH	Ouargla	06°47'39"	31°10'45"	1977		171					Exploité
F158	RHOURD EL BAGUEL 101	Ouargla	06°56'52"	31°23'07"	1977		153					Exploité
F159	RBH - 8	Ouargla	06°56'56"	31°23'25"	1998	IND	151	100	3008			Exploité
F160	Brides 2	Ouargla	07°05'52"	30°39'51"	1977	MXTE	186	90				Exploité
F161	WADI TEH2BIS/SH	Ouargla	07°37'12"	30°28'39"	1980							Exploité
F162	HBNS-109	Ouargla	08°01'00"	31°10'00"	2000	IND	188	120,705	3,682	10,4		Exploité
F163	QBH - 102	Ouargla	08°04'46"	30°40'22"	2002	IND	31	166,6666667				Exploité
F164	QBH - 104	Ouargla	08°05'11"	30°41'18"	2002	IND	31	217	16110	5,6		Exploité
F165	QBH - 106	Ouargla	08°05'58"	30°41'49"	2003	IND	31	196		6,7		Exploité
F166	QBH - 108	Ouargla	08°06'06"	30°43'13"	2003	IND	31	276,5		7,6		Exploité
F167	QBH - 103	Ouargla	08°06'07"	30°40'50"	2002	IND	31	234,5		4,2		Exploité
F168	QBH - 107	Ouargla	08°07'07"	30°40'32"	2003	IND	31	226,5833333	14824	4,6		Exploité
F169	QBH - 105	Ouargla	08°07'13"	30°41'25"	2002	IND	31	175		6,3		Exploité
F170	HBNS-110	Ouargla	08°08'42"	31°01'35"	2000	IND	191	176,75875		10		Exploité

F171	HBNS-111	Ouargla	08°09'04"	30°59'57"	2000	IND	203	164,34125	11974	8,5	Exploité
F172	HBN-102	Ouargla	08°10'31"	31°03'12"	1993	IND	199	297,6204167	11702	9	Exploité
F173	HBNS-113	Ouargla	08°10'46"	31°020'0"	2003	IND	206	160,8479167		11,5	Exploité
F174	HBNS-112	Ouargla	08°11'27"	31°00'21"	2002	IND	197	139,5904167	3286	11	Exploité
F175	HBN-101	Ouargla	08°12'28"	31°01'44"	1993	IND	205	311,9879167		5,4	Exploité
F176	BRN - C	Ouargla	08°33'53"	31°13'00"	2002	IND	31	57			Exploité
F177	BRN - B	Ouargla	08°34'48"	31°13'14"	1999	IND	31	57,07762557	1602		Exploité
F178	BRN - D	Ouargla	08°35'37"	31°13'31"	2003	IND	31	57	13128		Exploité
F179	KESKASSA 102	Ouargla	09°02'20"	31°50'12"	1968	IRR	270	20			Exploité
F180	EL GUELTA 102 EG 102	Ouargla	09°03'45"	32°01'45"	1966						Exploité
F181	RHOURD EL HAIBA	Ouargla	09°04'45"	31°48'28"	1977	IND	269				Exploité
F182	El Borma (WEST EBW101)	Ouargla	09°08'31"	31°35'17"	1986	AEP		108			Exploité
F183	El Borma 104 (ELB-104)	Ouargla	09°08'42"	31°35'30"	1970	IND		50		5,7	Exploité
F184	ELB - 106	Ouargla	09°09'49"	31°38'48"	1977	IND	32	50	4246		Exploité
F185	ELB - 105	Ouargla	09°10'45"	31°38'57"	1977	IND	32	50			Exploité
F186	ELB - 101 bis	Ouargla	09°11'01"	31°39'33"	1998	IND	32	50			Exploité
F187	EL BORMA SH	Ouargla	09°12'10"	31°32'25"	1970		191				Exploité
F188	AKFADOU 1 AKF 1	Ouargla	09°16'07"	30°59'06"	1975	IRR	270	10			Exploité
F189	RHOURD YACOUB 1	Ouargla	09°20'33"	30°46'08"	1971		274				Exploité
F190	Rhourde Yacoub 101	Ouargla	09°20'40"	30°46'16"	1971	AEP		2			Exploité
F191	Deb Deb Zhun	Illizi	09°26'37"	29°58'52"	1996	AEP	372		878	35	Exploité
F192	Ouargla 2 Albien	Ouargla			1974						Exploité
F193	Daiet El Frass DF 1A	Ouargla	04°19'50"	29°03'00"	1954	MXTE	282				Bouché
F194	Oued El Mekta		04°50'10"	32°47'41"	1976		295				Bouché
F195	Haniet El Beida (Naâma) HEB 3	Ouargla	04°59'10''	32°10'10''	1980	IND	240				Bouché
F196	OKNH-4		05°02'23"	31°50'00"	1982		202				Abandonn
F197	OKNH-3		05°02'43"	31°49'31"	1982		195				Abandonn
F198	ОКЈН-2		05°02'47"	31°50'55"	1975		229				Abandonn
F199	ОКЈН-4		05°03'11"	31°50'20"	1981		205				Abandonn
F200	OKNI-01		05°03'12"	31°48'59"	1981		195				Abandonn
F201	ОКЈН-3		05°03'31"	31°51'13"	1981		223				Abandonn
F202	OKNH-2		05°03'37"	31°49'25"	1982		224				Abandonn
F203	OKN 32		05°03'40"	31°46'47"							Abandonn
F204	OKJH-1		05°03'48"	31°49'59"	1982						Abandonn
F205	OKNH-1		05°03'54"	31°50'06"	1982		221				Abandonn

F206	CDR-1	Ouargla	05°03'58"	31°46'08"	1991		228			Bouché
F207	OKJ-60	Ouargla	05°05'52"	31°49'41"	1966		228			Bouché
F208	GLAH-A1		05°11'39"	31°56'50"	1994		216			Fermé
F209	GLAH-4		05°11'58"	31°58'38"	1981		206			Abandonné
F210	GLAH-1T		05°12'00"	31°57'32"	1981		223			Abandonné
F211	KEF EL ARGOUB KG3		05°12'06"	32°18'07"	1977					Bouché
F212	GLAH-2		05°13'07"	31°57'16"	1980		188			Abandonné
F213	OKPH-2		05°13'13"	31°45'47"	1981		219			Abandonné
F214	GLAH-3		05°13'18"	31°58'17"	1981		205			Abandonné
F215	OKPH-3		05°14'28"	31°45'52"	1981		209			Abandonné
F216	Bir Latmine		05°14'30"	32°25'07"	1985		78			Bouché
F217	ОКРН-АЗ		05°14'36"	31°45'13"	1993		219			A l'arrêt
F218	OKPH-1		05°14'53"	31°45'20"	1979		191			Abandonné
F219	Sondage Ouargla OA2		05°19'10"	32°00'01"	1956					Bouché
F220	OUARGLA ORG2 SOKRA		05°19'15"	31°55'08"	1979		140			Bouché
F221	Aïn Moussa – GLA NE 3		05°20'29"	32°03'25"						Bouché
F222	ALB EL H'DEB		05°22'04"	31°55'56"						Bouché
F223	DAIT TARFA 1 DET 1		05°23'37"	33°01'13"	1975		174			Bouché
F224	Albien Ain Djrad Hadjira EH1		05°25'12"	32°41'35"	1974					Bouché
F225	Albien OA4 à côté ITIDAS		05°27'50"	32°00'33"	1975		149			Bouché
F226	Zaccar 1 ZCR 1		05°31'27"	31°53'01"	1976		151			Fermé
F227	Oullouga 1BIS OA1BIS		05°33'43"	32°16'39"	1961		140			Bouché
F228	Boukhezana BKZ2		05°34'31"	32°17'18"	1973					Bouché
F229	DJEBEL ZAHRA		05°35'36"	32°46'19"	1976					Bouché
F230	SAHANE SAH2		05°35'55"	32°15'50"	1981		139			Bouché
										Non
F231	KHECHM ERIH II CDARS		05°36'36"	32°16'03"	1996		133	10		exploité
F232	N°2 OA2		05°37'32"	32°20'53"	1962					Bouché
F233	Khchem Erih GCA F6		05°40'47"	32°16'02"	2003		129	210		Non exploité
F233	KICHEHI EHII GCA FO		03 40 47	32 10 02	2003		129	210		Non
F234	Khchem Erih GCA F5		05°41'16"	32°13'52"	2002		128	228		exploité
							ĺ			Non
F235	Khchem Erih GCA F2		05°41'26"	32°17'23"	2001		134	181		exploité
F236	Albien Guedachi 1 Hadjira	Ouargla	05°41'27"	32°34'33"	1960	IRR	140			A l'arrêt
F227	Whaleson Fells CCA F4		058441531	2284510211	2002		424	200		Non
F237	Khchem Erih GCA F4		05°41'53"	32°15'03"	2002		134	208		exploité

Ĭ											Non
F238	Khchem Erih GCA F1		05°41'55"	32°18'28"	2001		131	181			exploité
F239	Guellala 1 GLA1		05°43'47"	31°57'16"	1976						Bouché
F240	Albien Baâdj	El Oued	05°46'59"	34°11'08"	2007	IRR	48				Bouché
F241	OMJ-802		05°57'57"	31°49'05"	1974		170			11,8	Fermé
F242	OMN 853	Ouargla	05°58'19"	31°46'50"	1979	IRR	222	1			Bouché
	Albien AEP Koudia (Mansoura bis										
F243	Hydr.)	El Oued	05°58'53"	33°27'04"	2008	AEP	26	1			Bouché
F244	HASSI REBALA HRB1		05°59'07"	32°16'03"	1975		168				Bouché
F245	TAMELLAHT AU CFPA		06°00'46"	33°00'33"	1954		6				Bouché
F246	TEMAAlbienNE TAMELLAHT	Ouargla	06°01'00"	33°02'40"	1983	IRR	67				Bouché
F247	Albien GCA Sidi Amrane	El Oued	06°01'45"	33°28'17"	2007	IRR	57				Bouché
F248	MDHA-104		06°02'14"	31°39'44"	1970		167				Bouché
F249	ОМОНА-6		06°02'18"	31°47'16"	1999		173			13	Fermé
F250	OMOHA-5		06°02'53"	31°48'11"	1999		152		2710	13	Fermé
F251	H.I UP.I HASSI-MESSA	Ouargla	06°03'24"	31°47'24"	1963	IND	144				Bouché
F252	MDHA-101		06°03'59"	31°40'10"	1957		171				Bouché
F253	Albien Sidi Slimane I D25 F1		06°06'00"	33°17'00"	1960		6	1			Bouché
F254	Albien S.Mahdi n°l D34 bis F1		06°06'33"	33°02'37"	1959		6	1			Bouché
F255	OMP 63	Ouargla	06°09'17 "	31°45'06"	1989	IND	169				Bouché
F256	OMP-63		06°09'17"	31°45'06"	1989		166		3946	13	Fermé
F257	OMP-732		06°09'45"	31°45'22"	1988		135				Bouché
F258	OMP 872	Ouargla	06°10'51"	31°43'00"	1981	IRR	168				Abandonné
F259	MDHA-102		06°11'36"	31°42'17"	1958		140				Bouché
F260	HTGN12/SH		06°20'59"	30°33'03"			229		2928	13,8	Fermé
F261	Tt1(Prof.)/SH		06°27'32"	30°04'18"						,	Bouché
F262	A4		06°27'46"	30°32'38"	1987		205				Bouché
F263	A3		06°28'15"	30°33'27"	1987		199				Fermé
F264	A2		06°28'36"	30°34'26"	1988		198				Bouché
F265	A1		06°28'44"	30°35'20"	1987		213				Bouché
F266	A7		06°30'00"	30°52'56"	1987		179		2288		Fermé
F267	A5		06°30'32"	30°48'50"	1987						Bouché
			30 30 32		2507						Non
F268	GTI9/SH		06°31'07"	30°22'04"			215				exploité
F269	NZ7/SH		06°31'25"	30°39'40"			189		2676	13,8	Fermé
F270	NZN5bis/SH		06°32'52"	30°49'38"	1980		186		1570	14,5	Fermé

F271	HASSI AMRANE NH1 SNREPAL		06°34'04"	32°58'01"	1959		121			Bouché
F272	RBH - 2		06°55'52"	31°23'12"	1977		149			Fermé
F273	RBH - 7		06°56'20"	31°22'33"	1963		148			Fermé
F274	RBH - 4		06°56'31"	31°22'38"	1978		150			Fermé
F275	RB - 29		06°56'51"	31°25'28"	1975		154			Abandonné
F276	RBH - 3		06°57'00"	31°23'17"	1977		152			Fermé
F277	SINCLAIR MPC RB2	Ouargla	06°58'12"	31°21'58"	1962	IND	154			Bouché
F278	RB - 2		06°58'12"	31°21'58"	1962		148			Abandonné
F279	RBH - 17		06°58'26"	31°23'15"	1973		148			Fermé
F280	WADI TEH2/SH,Ageep	Ouargla	07°37'03"	30°28'28"	1977					Non Trouvé
F281	Tounine	Ouargla	07°52'50"	31°48'36"	1981	IND				Bouché
F282	MLN - 2/Menzel Ladjmet	- Cuangia	07°54'16"	30°23'55"	2000	2	30			Abandonné
F283	QBH - 101/Ourhoud		08°05'51"	30°39'20"	2002		31			A l'arrêt
F284	AIN ROMANA ARN 101		08°08'45"	31°51'20"	1976		172			Bouché
F285	Ben ali	Ouargla	08°17'00"	31°59'24"	1987	IND				Bouché
F286	BRN - A		08°34'54"	31°14'08"	1999		31			A l'arrêt
F287	THF-101		08°53'19"	29°23'49"	1984		400		48,2	Non exploité
F288	Tembizine	Ouargla	08°58'25"	31°56'24"	1978	IND				Bouché
F289	MG 1	Ouargla	09°09'00"	31°28'48"	1958	IND	184			Bouché
F290	ELB - 101		09°11'03"	31°39'33"	1967		32			Bouché
F291	DIME-101		09°18'09"	29°00'19"	1977		614		378	A l'arrêt
F292	MRK-101		09°40'12"	29°06'19"	1974		614		410	A l'arrêt
F293	NZ7BIS/SH									Non exploité
F294	Bakrat 2	Ghardaïa				IRR		16,67		Bouché
F295	WT101/Grpt.SH.Ageep	Ouargla								Bouché

IND : Industrie

IRR: Irrigation
AEP: Approvisionnement en eau potable
MIXTE: AEP et IRR

ANNEXE 5 – Analyse statistique

Le logiciel utilisé est STATGRAPHICS Centurion 15.2.14

Tableau 1 : Régression multiple « année de réalisation – état des forage »

Corrélations

	Année	Etat	
Année		0,0550	Corrélation
		(272)	Taille d'échantillon
		0,3663	Probabilité
Etat	0,0550		Corrélation
	(272)		Taille d'échantillon
	0,3663		Probabilité

Ce tableau donne les corrélations de Pearson entre chaque paire de variables. Ces coefficients de corrélation varient entre -1 et +1 et mesurent la force de la relation linéaire entre les variables. Entre parenthèses sont indiqués les nombres de paires de données utilisées pour calculer ces coefficients. Le troisième nombre dans chaque case du tableau est la valeur de la probabilité qui teste la signification statistique des corrélations estimées. Des valeurs des probabilités audessous de 0,05 indiquent des coefficients de corrélation significativement différents de 0 au niveau de confiance de 95,0%. Aucunes paires de variables n'ont des valeurs des probabilités au-dessous de 0,05.

Tableau 2 : Régression multiple « date – débit – pression – température »

Corrélations

	Date	Débit	Pression	Température
Date		0,2935	-0,1574	0,2091
		(66)	(66)	(66)
		0,0168	0,2070	0,0920
Débit	0,2935		0,1516	0,4456
	(66)		(66)	(66)
	0,0168		0,2242	0,0002
Pression	-0,1574	0,1516		0,3185
	(66)	(66)		(66)
	0,2070	0,2242		0,0092
Température	0,2091	0,4456	0,3185	
	(66)	(66)	(66)	
	0,0920	0,0002	0,0092	

Ce tableau donne les corrélations de Pearson entre chaque paire de variables. Ces coefficients de corrélation varient entre -1 et +1 et mesurent la force de la relation linéaire entre les variables. Entre parenthèses sont indiqués les nombres de paires de données utilisées pour calculer ces coefficients. Le troisième nombre dans chaque case du tableau est la valeur de la probabilité qui teste la signification statistique des corrélations estimées. Des valeurs des probabilités audessous de 0,05 indiquent des coefficients de corrélation significativement différents de 0 au niveau de confiance de 95,0%. Les paires suivantes de variables ont des valeurs des probabilités au-dessous de 0,05 :

- Date et Débit
- Débit et Température
- Pression et Température

ANNEXE 6 - Forages du CI recensés ayant les données de débit et de pression.

Nom	Code	Wilaya	Commune	Année de Réalisation	Usage	Débit exploitable (l/s)	Pression (bar)
Dait Remt 101 (DR-101)	F13	Ouargla	Oued Mya	1960	IND	67	25,5
H.Ben Abdellah Albien/3PITONS	F40	Ouargla	Hassi Ben Abdellah	1961	IRR	360	19
H.B.A III / à coté Babziz à côté de OA4	F41	Ouargla	Hassi Ben Abdellah	1990	IRR	150	25
Albien SEMPAC	F44	Ouargla	Hassi Ben Abdellah	1990	IRR	540	24
Khechem E'Rih 1 (CDARS)	F47	Ouargla	Ouargla	1996	IRR	200	9,5
MDHA-6	F55	Ouargla	Hassi Messaoud	1999	IND	6	12,5
OMMH -104 Bis	F57	Ouargla	Hassi Messaoud	1982	IRR	2	9,2
Albien Ain Khadra Albien1 SM4	F65	El Oued	El-Meghaïer	1998	IRR	320	18,6
Albien Malha G.C.A	F68	El Oued	Djamaa	2007	IRR	120	13,2
OMNH A1	F71	Ouargla	Hassi Messaoud	1993	IND	113	12,5
OMNH A4	F73	Ouargla	AIN BEIDA	1994	IND	127	13
OMNH A2	F75	Ouargla	Hassi Messaoud	1996	IND	123	13
Albien Tarfaiet Saleh Albien2 SM3	F76	El Oued	El-Meghaïer	1997	IRR	356	18,4
Albien SEBBALA 1 SM3	F77	El Oued	El-Meghaïer	1998	IRR	310	27
Albien SEBBALA Albien1 SM5	F79	El Oued	El-Meghaïer	1999	IRR	294	22,75
HGAHA-1	F80	Ouargla	Hassi Messaoud	1999	IND	7	17,9
OMNH A3	F81	Ouargla	Hassi Messaoud	1994	IND	128	12,6
Albien Dendouga Albien3 SM3	F83	El Oued	El-Meghaïer	1998	IRR	350	16,5
Albien N° 3 CHOUCHA	F85	El Oued	Sidi Amrane (Djamaa)	1981	AEP	120	14
OMOH A1	F88	Ouargla	Hassi Messaoud	1993	IND	88	11,5
OMKH A1	F89	Ouargla	Hassi Messaoud	1994	IND	7	10,2
Albien ONID Tinedla	F94	El Oued	Tinedla (Djamaa)	2007	IRR	215	23,85
OMOH A4	F95	Ouargla	Hassi Messaoud	1993	IND	83	11,5
OMOH A2	F96	Ouargla	Hassi Messaoud	1993	IND	71	12
Albien Tigdidine Albien1 SD7	F98	El Oued	Djamaa	1997	IRR	186	15,8
OMOH A3	F99	Ouargla	Hassi Messaoud	1993	IND	60	11,8
MD-55	F100	Ouargla	Hassi Messaoud	1979	IND	25	13,8
MDH A4	F101	Ouargla	Hassi Messaoud	1996	IND	9	13,5
OMO-56	F102	Ouargla	Hassi Messaoud	1979	IRR	3	11,2
H1-Bis	F109	Ouargla	Hassi Messaoud	1979	IND	3	12,5
Albien Sidi Amrane D16 F	F112	El Oued	Sidi Amrane (Djamaa)	1997	AEP	332	5,75

MDH A5	F113	Ouargla	Hassi Messaoud	1997	IND	42	13,2
MDH 115	F116	Ouargla	Hassi Messaoud	1981	IND	67	17
OML-12	F117	Ouargla	Hassi Messaoud	1980	IRR	1	13
OMLHA-1	F118	Ouargla	Hassi Messaoud	1999	IND	6	13
Albien Nouveau AGID Sidi Mahdi	F122	Touggourt	Nezla	2007	MXTE	120	15,8
OMPHA-12	F126	Ouargla	Hassi Messaoud	1995	IND	95	12
OMPH A13	F127	Ouargla	Hassi Messaoud	1995	IND	106	12,8
MDH A1	F130	Ouargla	Hassi Messaoud	1995	IND	128	14,5
OMPH A2	F132	Ouargla	Hassi Messaoud	1995	IND	118	11,7
OMPH A1	F135	Ouargla	Hassi Messaoud	1989	IND	106	12,5
MD 432	F136	Ouargla	Hassi Messaoud	1990	IND	19	18,5
MDH A2	F137	Ouargla	Hassi Messaoud	1996	IND	122	15
MDH A3	F138	Ouargla	Hassi Messaoud	1995	IND	113	14,8
MDH 120	F140	Ouargla	Hassi Messaoud	1983	MXTE	50	8
MDHA-7	F141	Ouargla	Hassi Messaoud	2000	IND	42	12
ОМРН А7	F143	Ouargla	Hassi Messaoud	1996	IND	79	13,3
Albien Benacer	F146	Ouargla	Benacer	2009	AEP	120	16,5
GT101/SH	F148	Ouargla	Hassi Messaoud	1962	IND	10	14
GT110/SH	F150	Ouargla	Hassi Messaoud	1965	IND	10	14
GT36/SH	F151	Ouargla	Hassi Messaoud	1966	IND	10	13,1
MDR21/SH	F156	Ouargla	Hassi Messaoud	1990	IND	12	16
HBNS-109	F162	Ouargla	Hassi Messaoud	2000	IND	121	10,4
QBH - 104	F164	Ouargla	El Borma	2002	IND	217	5,6
QBH - 106	F165	Ouargla	El Borma	2003	IND	196	6,7
QBH - 108	F166	Ouargla	El Borma	2003	IND	277	7,6
QBH - 103	F167	Ouargla	El Borma	2002	IND	235	4,2
QBH - 107	F168	Ouargla	El Borma	2003	IND	227	4,6
QBH - 105	F169	Ouargla	El Borma	2002	IND	175	6,3
HBNS-110	F170	Ouargla	Hassi Messaoud	2000	IND	177	10
HBNS-111	F171	Ouargla	Hassi Messaoud	2000	IND	164	8,5
HBN-102	F172	Ouargla	Hassi Messaoud	1993	IND	298	9
HBNS-113	F173	Ouargla	Hassi Messaoud	2003	IND	161	11,5
HBNS-112	F174	Ouargla	Hassi Messaoud	2002	IND	140	11
HBN-101	F175	Ouargla	Hassi Messaoud	1993	IND	312	5,4
El Borma 104 (ELB-104)	F183	Ouargla	El Borma	1970	IND	50	5,7

ANNEXE 7 –

Tableau 1 : Forages actuellement en exploitation ayant les paramètres « débit » et « pression simulée »

N°	Code	Nom	Année de Réalisation	Usage	Débit exploitable (l/s)	Pression (bar)
1	F44	Albien SEMPAC	1990	IRR	540	24,0
2	F77	Albien SEBBALA 1 SM3	1998	IRR	310	27,0
3	F40	H.Ben Abdellah Albien/3PITONS	1961	IRR	360	19,0
4	F79	Albien SEBBALA Albien1 SM5	1999	IRR	294	22,8
5	F76	Albien Tarfaiet Saleh Albien2 SM3	1997	IRR	356	18,4
6	F65	Albien Ain Khadra Albien1 SM4	1998	IRR	320	18,6
7	F83	Albien Dendouga Albien3 SM3	1998	IRR	350	16,5
8	F94	Albien ONID Tinedla	2007	IRR	215	23,9
9	F103	Albien Nouveau Rimal 3	2008	AEP	238	19,0
10	F52	Albien Guedachi Hadjira	1989	MXTE	200	21,7
11	F45	H.Guenifida HGF1 Khch.Erih	1980	IRR	198	21,5
12	F41	H.B.A III / à coté Babziz à côté de OA4	1990	IRR	150	25,0
13	F54	Khchem Erih GCA F3	2002		207	16,0
14	F98	Albien Tigdidine Albien1 SD7	1997	IRR	186	15,8
15	F172	HBN-102	1993	IND	298	9,0
16	F43	Albien El Mir Hadjira	1986	MXTE	150	16,3
17	F107	Albien Ain Sahara (A.S.A.1)	1978	AEP	150	16,3
18	F114	Albien de Megarine D30 F1	1981	AEP	150	16,3
19	F120	Albien II D34 bis FA2 - SIDI MAHDI 2	1974	AEP	150	16,3
20	F163	QBH - 102	2002	IND	167	13,3
21	F145	Albien Taïbet	1989	AEP	166	13,3
22	F166	QBH - 108	2003	IND	277	7,6
23	F146	Albien Benacer	2009	AEP	120	16,5
24	F112	Albien Sidi Amrane D16 F	1997	AEP	332	5,8
25	F47	Khechem E'Rih 1 (CDARS)	1996	IRR	200	9,5
26	F122	Albien Nouveau AGID Sidi Mahdi	2007	MXTE	120	15,8
27	F130	MDH A1	1995	IND	128	14,5
28	F173	HBNS-113	2003	IND	161	11,5
29	F137	MDH A2	1996	IND	122	15,0
30	F170	HBNS-110	2000	IND	177	10,0
31	F13	Dait Remt 101 (DR-101)	1960	IND	67	25,5
32	F175	HBN-101	1993	IND	312	5,4
33	F85	Albien N° 3 CHOUCHA	1981	AEP	120	14,0
34	F138	MDH A3	1995	IND	113	14,8
35	F73	OMNH A4	1994	IND	127	13,0
36	F81	OMNH A3	1994	IND	128	12,6
37	F75	OMNH A2	1996	IND	123	13,0
38	F68	Albien Malha G.C.A	2007	IRR	120	13,2
39	F36	Albien El Khefif	1991	IRR	120	13,0
40	F46	Albien M'rara N°5	1988	IRR	120	13,0

41	F48	Albien M'rara N°4	1988	IRR	120	13,0
42	F69	Albien Aïn Abane Albien2 SM4	1998	IRR	120	13,0
43	F70	Albien ONID	2007	IRR	120	13,0
44	F86	Albien Mazer Albien 3 SD10	1999	IRR	120	13,0
45	F90	Unknown	1984	AEP	120	13,0
46	F91	Albien Blidet Amor	1984	AEP	120	13,0
47	F97	Albien ONID			120	13,0
48	F119	Albien III D34 bis FA3 - SIDI MAHDI 3	1992	AEP	120	13,0
49	F125	Albien Nouveau ONID	2007	IRR	120	13,0
50	F147	A9	1988	IRR	120	13,0
51	F174	HBNS-112	2002	IND	140	11,0
52	F53	Albien M'rara N°2	1974	IRR	115	12,5
53	F71	OMNH A1	1993	IND	113	12,5
54	F171	HBNS-111	2000	IND	164	8,5
55	F132	OMPH A2	1995	IND	118	11,7
56	F127	OMPH A13	1995	IND	106	12,8
57	F87	Albien Djamaa 3 (D13 F3)	1980	AEP	130	10,4
58	F135	OMPH A1	1989	IND	106	12,5
59	F165	QBH - 106	2003	IND	196	6,7
60	F50	Albien M'rara N°3	1974	IRR	110	11,9
61	F51	Albien M'rara N°1 AEP Château M'Rara	1974	AEP	110	11,9
62	F152	A6	1987	IRR	110	11,9
63	F162	HBNS-109	2000	IND	121	10,4
64	F164	QBH - 104	2002	IND	217	5,6
65	F38	El H'deb II (Hmidi HoAlbienne)		MXTE	105	11,4
66	F126	OMPHA-12	1995	IND	95	12,0
67	F116	MDH 115	1981	IND	67	17,0
68	F169	QBH - 105	2002	IND	175	6,3
69	F105	AEP de Touggourt	1975	AEP	100	10,8
70	F123	Sidi Slimane II D25 F2	1975	MXTE	100	10,8
71	F149	A8	1987	IRR	100	10,8
72	F159	RBH - 8	1998	IND	100	10,8
73	F143	OMPH A7	1996	IND	79	13,3
74	F168	QBH - 107	2003	IND	227	4,6
75	F37	El H'deb I (Bousmaha saAlbien) OA5		MXTE	98	10,6
76	F88	OMOH A1	1993	IND	88	11,5
77	F167	QBH - 103	2002	IND	235	4,2
78	F95	OMOH A4	1993	IND	83	11,5
79	F160	Brides 2	1977	MXTE	90	9,8
80	F96	OMOH A2	1993	IND	71	12,0
81	F11	Ain Zana 101 (ANZ-101)	1975	IRR	83	9,0
82	F99	ОМОН АЗ	1993	IND	60	11,8
83	F78	MDH 113	1980	IND	75	8,1
84	F108	Oued El MerâaOEM1 Metmata	1975	IRR	75	8,1
85	F113	MDH A5	1997	IND	42	13,2
86	F141	MDHA-7	2000	IND	42	12,0
87	F140	MDH 120	1983	MXTE	50	8,0

88	F136	MD 432	1990	IND	19	18,5
89	F100	MD-55	1979	IND	25	13,8
90	F10	HASSI BERKANE 1 (HB1)	1961	IND	50	6,4
91	F144	Bir Latmine 1 (BLE-1)	1984	IND	50	5,8
92	F8	Houtia 2		IRR	50	5,4
93	F82	Krikeb Salah D1bisF8	1996	IRR	50	5,4
94	F156	MDR21/SH	1990	IND	12	16,0
95	F14	Oued M'ya (Remta - OMYA 101)	1976	IRR	40	4,5
96	F12	Tafziouine		IRR	40	4,3
97	F63	Soviétique D1bis F2	1967	IRR	40	4,3
98	F61	Soviétique D1bis F3	1970	IRR	38	4,2
99	F148	GT101/SH	1962	IND	10	14,0
100	F150	GT110/SH	1965	IND	10	14,0
101	F62	COMAFOR D1bis F1	1961	IRR	36	4,0
102	F66	AEP Still D1bis F6	1988	IRR	36	3,9
103	F67	Soviétique D1bis F4	1970	IRR	36	3,8
104	F26	OKPH-A1	1992	IND	35	3,9
105	F151	GT36/SH	1966	IND	10	13,1
106	F80	HGAHA-1	1999	IND	7	17,9
107	F19	ОКЈН АЗ	1994	IND	35	3,7
108	F101	MDH A4	1996	IND	9	13,5
109	F24	GLAH-A3	1993	IND	14	8,8
110	F23	OKPH-A5	1997	IND	34	3,5
111	F16	OKMH 89	1990	IND	20	5,0
112	F18	ОКЈН А1	1993	IND	10	10,0
113	F27	OKPH-A4	1995	IND	28	3,2
114	F29	OKPH-A2	1993	IND	28	3,2
115	F9	Oued Metlili 3		IRR	15	6,0
116	F118	OMLHA-1	1999	IND	6	13,0
117	F17	OKNH A1	1997	IND	27	2,9
118	F55	MDHA-6	1999	IND	6	12,5
119	F7	Ntissa 2		IRR	16	5,0
120	F124	OMPH A12	1995	IND	26	2,9
121	F89	OMKH A1	1994	IND	7	10,2
122	F20	ОКЈН А2	1993	IND	26	2,9
123	F22	GLAH-A4	1993	IND	12	6,0
124	F21	ОКЈН А4	1995	IND	25	2,8
125	F25	GLAH-A2	1993	IND	10	6,7
126	F72	Krikeb Salah D1bis F5	1987	IRR	25	2,6
127	F64	CDARS RN3	1997	IRR	20	3,0
128	F102	OMO-56	1979	IRR	3	11,2
129	F109	H1-Bis	1979	IND	3	12,5
130	F104	OMO 56	1968	IND	7	4,0
131	F131	MD 312	1980	IRR	7	2,8
132	F117	OML-12	1980	IRR	1	13,0
133	F57	OMMH -104 Bis	1982	IRR	2	9,2

Tableau 2 : Forages exclus pour cause d'éloignement

N°	Code	Nom	Année de Réalisation	Usage	Débit exploitable (l/s)	Pression (bar)
1	F2	Ain Salah	1992	AEP	100	10,8
2	F3	Ain Salah	1985	AEP	90	9,8
3	F5	Foggarat EZO 2	1982	MXTE	100	10,8
4	F176	BRN - C	2002	IND	57	6,2
5	F177	BRN - B	1999	IND	57	6,2
6	F178	BRN - D	2003	IND	57	6,2
7	F179	KESKASSA 102	1968	IRR	20	2,5
8	F182	El Borma (WEST EBW101)	1986	AEP	108	11,7
9	F183	El Borma 104 (ELB-104)	1970	IND	50	5,7
10	F184	ELB - 106	1977	IND	50	5,2
11	F185	ELB - 105	1977	IND	50	6,2
12	F186	ELB - 101 bis	1998	IND	50	6,5
13	F188	AKFADOU 1 AKF 1	1975	IRR	10	4,9
14	F190	Rhourde Yacoub 101	1971	AEP	2	2,0

Annexe 8 : Puissance hydraulique des forages CI actuellement en exploitation.

N°	Code	Nom	Débit exploitable (l/s)	Pression (bar)	Puissance Hydraulique (kW)
1	F44	Albien SEMPAC	540	24,0	1296,00
2	F77	Albien SEBBALA 1 SM3	310	27,0	837,00
3	F40	H.Ben Abdellah Albien/3PITONS	360	19,0	684,00
4	F79	Albien SEBBALA Albien1 SM5	294	22,8	668,85
5	F76	Albien Tarfaiet Saleh Albien2 SM3	356	18,4	655,04
6	F65	Albien Ain Khadra Albien1 SM4	320	18,6	595,20
7	F83	Albien Dendouga Albien3 SM3	350	16,5	577,50
8	F94	Albien ONID Tinedla	215	23,9	512,78
9	F103	Albien Nouveau Rimal 3	238	19,0	452,20
10	F52	Albien Guedachi Hadjira	200	21,7	433,20
11	F45	H.Guenifida HGF1 Khch.Erih	198	21,5	424,71
12	F41	H.B.A III / à coté Babziz à côté de OA4	150	25,0	375,00
13	F54	Khchem Erih GCA F3	207	16,0	331,20
14	F98	Albien Tigdidine Albien1 SD7	186	15,8	293,88
15	F172	HBN-102	298	9,0	267,86
16	F43	Albien El Mir Hadjira	150	16,3	243,75
17	F107	Albien Ain Sahara (A.S.A.1)	150	16,3	243,75
18	F114	Albien de Megarine D30 F1	150	16,3	243,75
19	F120	Albien II D34 bis FA2 - SIDI MAHDI 2	150	16,3	243,75
20	F163	OBH - 102	167	13,3	222,17
21	F145	Albien Taïbet	166	13,3	220,45
22	F166	QBH - 108	277	7,6	210,14
23	F146	`	120	,	198,00
24	F146	Albien Benacer	332	16,5 5,8	198,00
		Albien Sidi Amrane D16 F			
25	F47	Khechem E'Rih 1 (CDARS)	200	9,5	190,00
26	F122	Albien Nouveau AGID Sidi Mahdi	120	15,8	189,60
27	F130	MDH A1	128	14,5	185,60
28	F173	HBNS-113	161	11,5	184,98
29	F137	MDH A2 HBNS-110	122	15,0	183,00
30	F170	1	177	10,0	176,76
31	F13	Dait Remt 101 (DR-101)	67	25,5	170,85
32	F175	HBN-101	312	5,4	168,47
33	F85	Albien N° 3 CHOUCHA	120	14,0	168,00
34	F138	MDH A3	113	14,8	166,50
35	F73	OMNH A4	127	13,0	164,67
36	F81	OMNH A3	128	12,6	161,70
37	F75	OMNH A2	123	13,0	159,80
38	F68	Albien Malha G.C.A	120	13,2	158,40
39	F36	Albien El Khefif	120	13,0	156,00
40	F46	Albien M'rara N°5	120	13,0	156,00
41	F48	Albien M'rara N°4	120	13,0	156,00
42	F69	Albien Aïn Abane Albien2 SM4	120	13,0	156,00
43	F70	Albien ONID	120	13,0	156,00
44	F86	Albien Mazer Albien 3 SD10	120	13,0	156,00
45	F90	Unknown	120	13,0	156,00
46	F91	Albien Blidet Amor	120	13,0	156,00
47	F97	Albien ONID	120	13,0	156,00
48	F119	Albien III D34 bis FA3 - SIDI MAHDI 3	120	13,0	156,00
49	F125	Albien Nouveau ONID	120	13,0	156,00
50	F147	A9	120	13,0	156,00
51	F174	HBNS-112	140	11,0	153,55
52	F53	Albien M'rara N°2	115	12,5	143,18
53	F71	OMNH A1	113	12,5	140,63
54	F171	HBNS-111	164	8,5	139,69
54		4			,

56	F127	OMPH A13	106	12,8	135,46
57	F87	Albien Djamaa 3 (D13 F3)	130	10,4	135,20
58	F135	OMPH A1	106	12,5	132,81
59	F165	QBH - 106	196	6,7	131,32
60	F50	Albien M'rara N°3	110	11,9	131,01
61	F51	Albien M'rara N°1 AEP Château M'Rara	110	11,9	131,01
62	F152	A6	110	11,9	131,01
63	F162	HBNS-109	121	10,4	125,53
64	F164	QBH - 104	217	5,6	121,52
65	F38	El H'deb II (Hmidi HoAlbienne)	105	11,4	119,39
66	F126	OMPHA-12	95	12,0	114,00
67	F116	MDH 115	67	17,0	113,39
68	F169	QBH - 105	175	6,3	110,25
69	F105	AEP de Touggourt	100	10,8	108,30
70	F123	Sidi Slimane II D25 F2	100	10,8	108,30
71	F149	A8	100	10,8	108,30
72	F159	RBH - 8	100	10,8	108,30
73	F143	OMPH A7	79	13,3	105,30
74	F168	QBH - 107	227	4,6	104,23
75	F37	El H'deb I (Bousmaha saAlbien) OA5	98	10,6	103,98
76	F88	OMOH A1	88	11,5	101,58
77	F167	QBH - 103	235	4,2	98,49
78	F95	OMOH A4	83	11,5	95,36
79	F160	Brides 2	90	9,8	87,75
80	F96	OMOH A2	71	12,0	85,00
81	F11	Ain Zana 101 (ANZ-101)	83	9,0	74,62
82	F99	OMOH A3	60	11,8	71,30
83	F78	MDH 113	75	8,1	60,90
84	F108	Oued El MerâaOEM1 Metmata	75	8,1	60,90
85	F113	MDH A5	42	13,2	55,00
86	F141	MDHA-7	42	12,0	50,00
87	F140	MDH 120	50	8,0	40,00
88	F136	MD 432 MD-55	19 25	18,5 13,8	35,08
89	F100	HASSI BERKANE 1 (HB1)	50	6,4	34,50
90 91	F10 F144	Bir Latmine 1 (BLE-1)	50	5,8	32,00 29,00
92	F8	` ′	50	5,4	
92	F82	Houtia 2 Krikeb Salah D1bisF8		5,4	27,05 27,05
94	F156	MDR21/SH	50	16,0	19,20
95	F14	Oued M'ya (Remta - OMYA 101)	40	4,5	18,00
96	F12	Tafziouine	40	4,3	17,32
97	F63	Soviétique D1bis F2	40	4,3	17,32
98	F61	Sovietique D1bis F3	38	4,3	15,96
99	F148	GT101/SH	10	14,0	14,59
100	F150	GT110/SH	10	14,0	14,58
101	F62	COMAFOR D1bis F1	36	4,0	14,40
102	F66	AEP Still D1bis F6	36	3,9	14,04
103	F67	Soviétique D1bis F4	36	3,8	13,68
104	F26	OKPH-A1	35	3,9	13,65
105	F151	GT36/SH	10	13,1	13,65
106	F80	HGAHA-1	7	17,9	13,28
107	F19	ОКЈН АЗ	35	3,7	12,95
108	F101	MDH A4	9	13,5	12,49
109	F24	GLAH-A3	14	8,8	12,32
110	F23	OKPH-A5	34	3,5	11,90
111	F16	OKMH 89	20	5,0	10,00
112	F18	OKJH A1	10	10,0	10,00
113	F27	OKPH-A4	28	3,2	8,96
114	F29	OKPH-A2	28	3,2	8,96
115	F9	Oued Metlili 3	15	6,0	8,70

116	F118	OMLHA-1	6	13,0	8,13								
117	F17	OKNH A1	27	2,9	7,83								
118	F55	MDHA-6	6	12,5	7,81								
119	F7	Ntissa 2	16	5,0	7,75								
120	F124	OMPH A12	26	2,9	7,65								
121	F89	OMKH A1	7	10,2	7,48								
122	F20	OKJH A2	26	2,9	7,41								
123	F22	GLAH-A4	12	6,0	7,20								
124	F21	OKJH A4	25	2,8	6,88								
125	F25	GLAH-A2	10	6,7	6,65								
126	F72	Krikeb Salah D1bis F5	25	2,6	6,50								
127	F64	CDARS RN3	20	3,0	6,00								
128	F102	OMO-56	3	11,2	3,73								
129	F109	H1-Bis	3	12,5	3,13								
130	F104	OMO 56	7	4,0	2,90								
131	F131	MD 312	7	2,8	2,02								
132	F117	OML-12	1	13,0	1,52								
133	F57	OMMH -104 Bis	2	9,2	1,38								
		P	uissance hydrauli	Puissance hydraulique cumulées (kW) 19277,96									

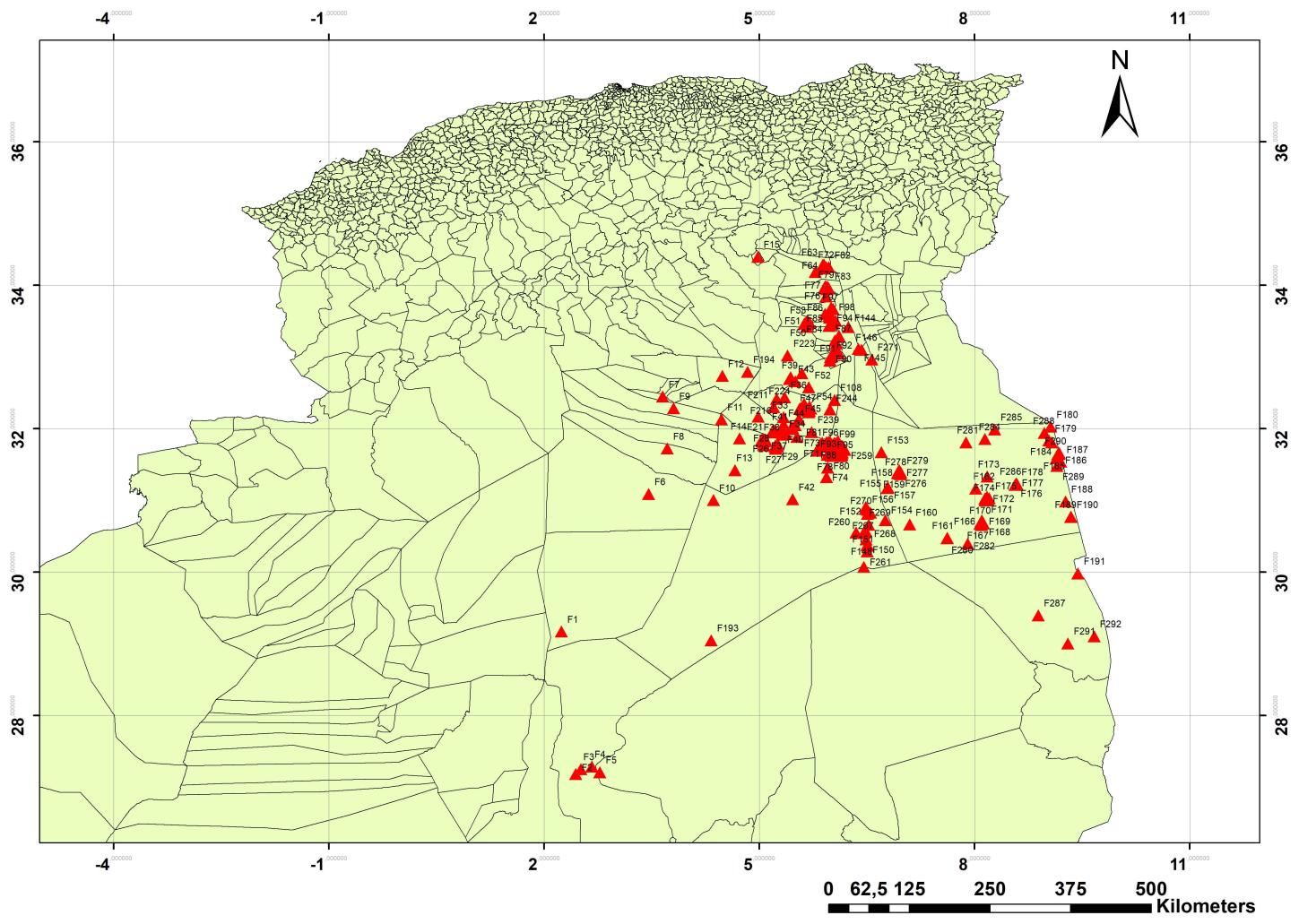
Annexe 9 : Les données utilisées pour la création de la carte.

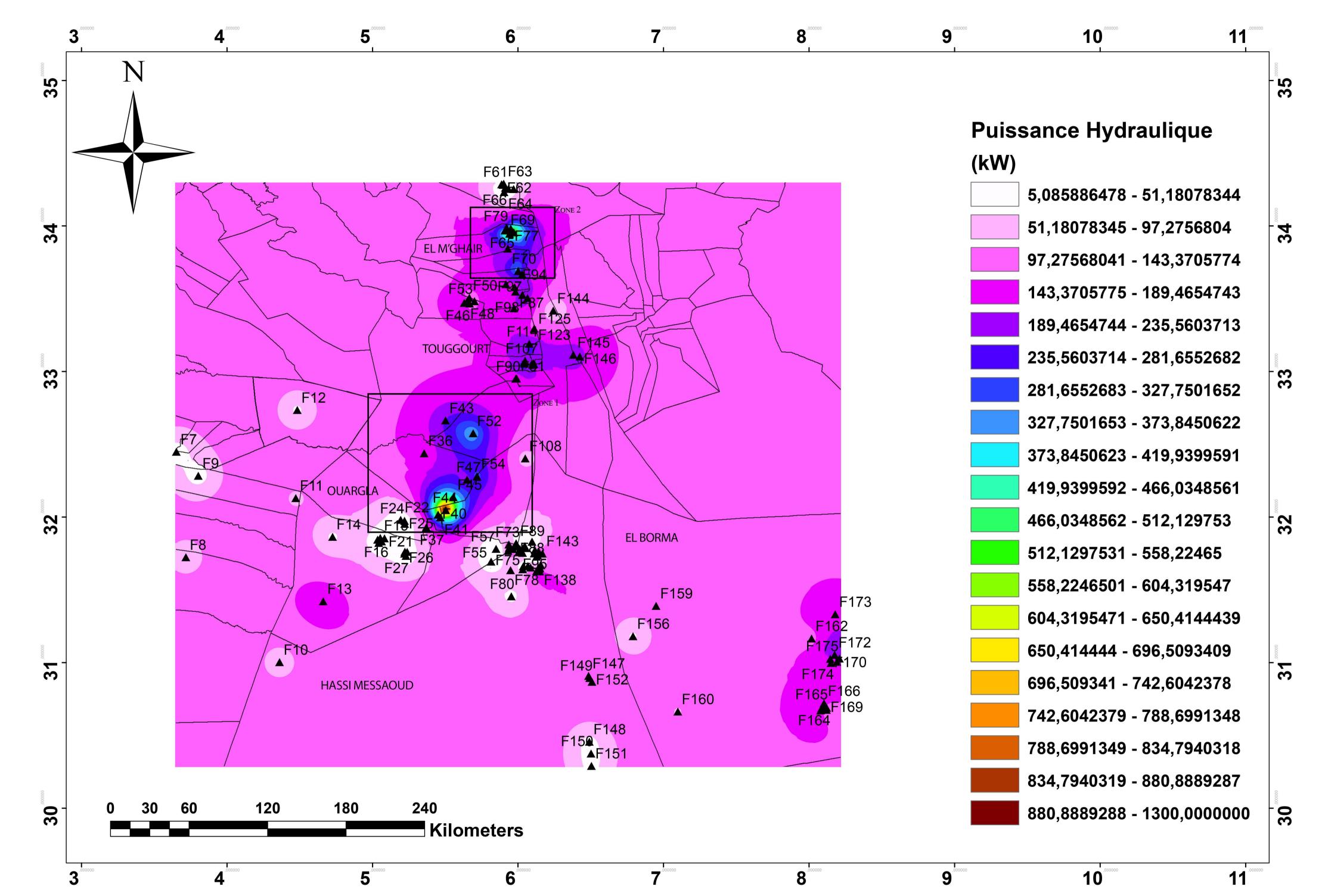
Nom	Code	Longitude X	Latitude Y	Puissance (kW)
Albien SEMPAC	F44	5,5022222	32,0488889	1296,00
Albien SEBBALA 1 SM3	F77	5,9475000	33,9713889	837,00
H.Ben Abdellah Albien/3PITONS	F40	5,4500000	32,0166667	684,00
Albien SEBBALA Albien1 SM5	F79	5,9500000	33,9816667	668,85
Albien Tarfaiet Saleh Albien2 SM3	F76	5,9413889	33,9463889	655,04
Albien Ain Khadra Albien1 SM4	F65	5,9102778	33,9694444	595,20
Albien Dendouga Albien3 SM3	F83	5,9710240	33,9566430	577,50
Albien ONID Tinedla	F94	6,0008333	33,6894444	512,78
Albien Nouveau Rimal 3	F103	6,0455556	33,0544444	452,20
Albien Guedachi Hadjira	F52	5,6908333	32,5758333	433,20
H.Guenifida HGF1 Khch.Erih	F45	5,5550000	32,1383333	424,71
H.B.A III / à coté Babziz à côté de OA4	F41	5,4655556	31,9983333	375,00
Khchem Erih GCA F3	F54	5,7175	32,2805556	331,20
Albien Tigdidine Albien1 SD7	F98	6,0288889	33,5266667	293,88
HBN-102	F172	8,1752778	31,0533333	267,86
Albien El Mir Hadjira	F43	5,5008333	32,6630556	243,75
Albien II D34 bis FA2 - SIDI MAHDI 2	F120	6,1033333	33,0575000	243,75
Albien Ain Sahara (A.S.A.1)	F107	6,0483333	33,0741667	243,75
Albien de Megarine D30 F1	F114	6,0772222	33,1900000	243,75
QBH - 102	F163	8,0794444	30,6727778	222,17
Albien Taïbet	F145	6,3800000	33,1138889	220,45
QBH - 108	F166	8,1016667	30,7202778	210,14
Albien Benacer	F146	6,4241667	33,1027778	198,00
Albien Sidi Amrane D16 F	F112	6,0652778	33,5047222	190,90
Khechem E'Rih 1 (CDARS)	F47	5,6488889	32,2588889	190,00
Albien Nouveau AGID Sidi Mahdi	F122	6,1091667	33,0500000	189,60
MDH A1	F130	6,1269444	31,6286111	185,60
HBNS-113	F173	8,1794444	31,3333333	184,98
MDH A2	F137	6,1494444	31,6283333	183,00
HBNS-110	F170	8,145	31,0263889	176,76
Dait Remt 101 (DR-101)	F13	4,6611111	31,4216667	170,85
HBN-101	F175	8,2077778	31,0288889	168,47
Albien N° 3 CHOUCHA	F85	5,9722222	33,4344444	168,00
MDH A3	F138	6,1500000	31,6508333	166,50
OMNH A4	F73	5,9361111	31,8127778	164,67
OMNH A3	F81	5,9636111	31,7805556	161,70
OMNH A2	F75	5,9386111	31,7902778	159,80
Albien Malha G.C.A	F68	5,9166667	33,6000000	158,40
A9	F147	6,4844444	30,9088889	156,00
Albien El Khefif	F36	5,3547222	32,4388889	156,00
Unknown	F90	5,9833333	32,9500000	156,00
Albien Blidet Amor	F91	5,9900000	32,9513889	156,00
Albien III D34 bis FA3 - SIDI MAHDI 3	F119	6,1008333	33,0452778	156,00
Albien Nouveau ONID	F125	6,1113889	33,2955556	156,00
Albien M'rara N°5	F46	5,6300000	33,4705556	156,00
Albien M'rara N°4	F48	5,6488889	33,4833333	156,00
Albien Mazer Albien 3 SD10	F86	5,9761111	33,5797222	156,00
Albien ONID	F97	6,0282720	33,6683890	156,00
Albien ONID	F70	5,9286111	33,8444444	156,00
Albien Aïn Abane Albien2 SM4	F69	5,9202778	33,9883333	156,00
HBNS-112	F174	8,1908333	31,0058333	153,55
Albien M'rara N°2	F53	5,7000000	33,4833333	143,18
OMNH A1	F71	5,9316667	31,7691667	140,63
HBNS-111	F171	8,1511111	30,9991667	139,69

OMPH A2	F132	6,1341667	31,7380556	137,48
OMPH A13	F127	6,1158333	31,7733333	135,46
Albien Djamaa 3 (D13 F3)	F87	5,9819444	33,5483333	135,20
OMPH A1	F135	6,1450000	31,7586111	132,81
QBH - 106	F165	8,0994444	30,6969444	131,32
A6	F152	6,5077778	30,8688889	131,01
Albien M'rara N°1 AEP Château M'Rara	F51	5,6666667	33,4666667	131,01
Albien M'rara N°3	F50	5,6647222	33,5058333	131,01
HBNS-109	F162	8,0166667	31,1666667	125,53
QBH - 104	F164	8,0863889	30,6883333	121,52
El H'deb II (Hmidi HoAlbienne)	F38	5,3722222	31,925	119,39
OMPHA-12	F126	6,1113889	31,7513889	114,00
MDH 115	F116	6,0861111	31,6536111	113,39
QBH - 105	F169	8,1202778	30,6902778	110,25
A8	F149	6,4922222	30,8955556	108,30
RBH - 8	F159	6,9488889	31,3902778	108,30
AEP de Touggourt	F105	6,0469444	33,0683333	108,30
Sidi Slimane II D25 F2	F123	6,1105556	33,2952778	108,30
OMPH A7	F143	6,1669444	31,7500000	105,30
QBH - 107	F168	8,1186111	30,6755556	104,23
El H'deb I (Bousmaha saAlbien) OA5	F37		· ·	
OMOH A1	F88	5,3688889	31,9288889	103,98 101,58
QBH - 103		5,9855556	31,7983333	
	F167	8,1019444	30,6805556	98,49
OMOH A4	F95	6,0038889	31,7586111	95,36
Brides 2	F160	7,0977778	30,6641667	87,75
OMOH A2	F96	6,0119444	31,7805556	85,00
Ain Zana 101 (ANZ-101)	F11	4,4719444	32,1305556	74,62
OMOH A3	F99	6,0308333	31,7544444	71,30
MDH 113	F78	5,9480556	31,6352778	60,90
Oued El MerâaOEM1 Metmata	F108	6,0488889	32,4033333	60,90
MDH A5	F113	6,0680556	31,6641667	55,00
MDHA-7	F141	6,155	31,6722222	50,00
MDH 120	F140	6,1550000	31,6694444	40,00
MD 432	F136	6,1463889	31,6455556	35,08
MD-55	F100	6,0319444	31,6422222	34,50
HASSI BERKANE 1 (HB1)	F10	4,3611111	31,0033333	32,00
Bir Latmine 1 (BLE-1)	F144	6,2416667	33,4186111	29,00
Houtia 2	F8	3,7166667	31,7247222	27,05
Krikeb Salah D1bisF8	F82	5,9688889	34,2538889	27,05
MDR21/SH	F156	6,79	31,1825	19,20
Oued M'ya (Remta - OMYA 101)	F14	4,7247222	31,8644444	18,00
Tafziouine	F12	4,4827778	32,7361111	17,32
Soviétique D1bis F2	F63	5,9016667	34,2902778	17,32
Soviétique D1bis F3	F61	5,8866667	34,2869444	15,96
GT101/SH	F148	6,4897222	30,4566667	14,59
GT110/SH	F150	6,5008333	30,3755556	14,58
COMAFOR D1bis F1	F62	5,8966667	34,2830556	14,40
AEP Still D1bis F6	F66	5,9127778	34,2633333	14,04
Soviétique D1bis F4	F67	5,9169444	34,2547222	13,68
OKPH-A1	F26	5,2219444	31,7622222	13,65
GT36/SH	F151	6,5036111	30,2902778	13,65
HGAHA-1	F80	5,9536111	31,4558333	13,28
ОКЈН АЗ	F19	5,0525	31,8572222	12,95
MDH A4	F101	6,0363889	31,6630556	12,49
GLAH-A3	F24	5,2191667	31,9747222	12,32
OKPH-A5	F23	5,2191667	31,75	11,90
ОКЈН А1	F18	5,0488889	31,8358333	10,00
OKMH 89	F16	5,0341667	31,8452778	10,00
OKPH-A4	F27	5,2297222	31,7344444	8,96
			,	-,- 0

Oued Metlili 3	F9	3,8025000	32,2844444	8,70
OMLHA-1	F118	6,0958333	31,8311111	8,13
OKNH A1	F17	5,0430556	31,8233333	7,83
MDHA-6	F55	5,8138889	31,6941667	7,81
Ntissa 2	F7	3,6516667	32,4491667	7,75
OMPH A12	F124	6,1113889	31,7513889	7,65
OMKH A1	F89	5,9863889	31,8205556	7,48
ОКЈН А2	F20	5,0622222	31,8333333	7,41
GLAH-A4	F22	5,1927778	31,9813889	7,20
ОКЈН А4	F21	5,0819444	31,8541667	6,88
GLAH-A2	F25	5,2205556	31,9544444	6,65
Krikeb Salah D1bis F5	F72	5,9333333	34,2550000	6,50
CDARS RN3	F64	5,9041667	34,2327778	6,00
OMO-56	F102	6,0372222	31,7886111	3,73
H1-Bis	F109	6,0513889	31,7877778	3,13
OMO 56	F104	6,0466667	31,8011111	2,90
MD 312	F131	6,1269444	31,7286111	2,02
OML-12	F117	6,095	31,8308333	1,52
OMMH -104 Bis	F57	5,8480556	31,7819444	1,38

Annexe 10 : Résultats de l'analyse RETScreen de faisabilité de projet hydroélectrique appliqué sur tous les forages albiens recensés individuellement.


N°	Code Forage	Débit exploitable (l/s)	Pression (bar)	Puissance Hydraulique (kW)	Capacité électrique Réelle (kW)	Electricité fournie (MWh/an)	Revenu de vente (DA) (base de calcul 8DA/kWh)	Emission GES Réseau (tCO2/an)	Emission GES Microcentrale (tCO2/an)	Réduction annuelle brute d'émission de GES (tCO2/an)	Equivalent à barils de pétrole brute non consommés	Equivalent au nombre de litre d'essence non consommés
1	F44	540	24	1296	972	8514,72	68 117 760,00	5089,25	356,25	4733,00	11007	2033638,69
2	F77	310	27	837	627,75	5499,09	43 992 720,00	3286,81	230,08	3056,73	7109	1313391,65
3	F40	360	19	684	513	4493,88	35 951 040,00	2685,99	188,02	2497,97	5809	1073309,31
4	F79	294	22,8	668,85	501,6375	4394,3445	35 154 756,00	2626,50	183,85	2442,64	5681	1049536,45
5	F76	356	18,4	655,04	491,28	4303,6128	34 428 902,40	2572,27	180,06	2392,21	5563	1027866,27
6	F65	320	18,6	595,2	446,4	3910,464	31 283 712,00	2337,28	163,61	2173,67	5055	933967,40
7	F83	350	16,5	577,5	433,125	3794,175	30 353 400,00	2267,78	158,74	2109,03	4905	906193,17
8	F94	215	23,9	512,78	384,585	3368,9646	26 951 716,80	2013,63	140,95	1872,68	4355	804636,77
9	F103	238	19	452,2	339,15	2970,954	23 767 632,00	1775,74	124,30	1651,44	3841	709576,71
10	F52	200	21,7	433,2	324,9	2846,124	22 768 992,00	1701,13	119,08	1582,05	3679	679762,56
11	F45	198	21,5	424,71	318,5325	2790,3447	22 322 757,60	1667,79	116,75	1551,04	3607	666440,35
12	F41	150	25	375	281,25	2463,75	19 710 000,00	1472,58	103,08	1369,50	3185	588437,12
13	F54	207	16	331,2	248,4	2175,984	17 407 872,00	1300,59	91,04	1209,54	2813	519707,67
14	F98	186	15,8	293,88	220,41	1930,7916	15 446 332,80	1154,03	80,78	1073,25	2496	461146,40
15	F172	298	9	267,86	200,895	1759,8402	14 078 721,60	1051,86	73,63	978,23	2275	420316,71
16	F43	150	16,3	243,75	182,8125	1601,4375	12 811 500,00	957,18	67,00	890,18	2070	382484,13
17	F107	150	16,3	243,75	182,8125	1601,4375	12 811 500,00	957,18	67,00	890,18	2070	382484,13
18	F114	150	16,3	243,75	182,8125	1601,4375	12 811 500,00	957,18	67,00	890,18	2070	382484,13
19	F120	150	16,3	243,75	182,8125	1601,4375	12 811 500,00	957,18	67,00	890,18	2070	382484,13
20	F163	167	13,3	222,17	166,6275	1459,6569	11 677 255,20	872,44	61,07	811,37	1887	348621,53
21	F145	166	13,3	220,45	165,3375	1448,3565	11 586 852,00	865,68	60,60	805,08	1872	345922,57
22	F166	277	7,6	210,14	157,605	1380,6198	11 044 958,40	825,20	57,76	767,43	1785	329744,47
23	F146	120	16,5	198	148,5	1300,86	10 406 880,00	777,52	54,43	723,10	1682	310694,80


24	F112	332	5,8	190,9	143,175	1254,213	10 033 704,00	749,64	52,48	697,17	1621	299553,72
25	F47	200	9,5	190	142,5	1248,3	9 986 400,00	746,11	52,23	693,88	1614	298141,47
26	F122	120	15,8	189,6	142,2	1245,672	9 965 376,00	744,54	52,12	692,42	1610	297513,81
27	F130	128	14,5	185,6	139,2	1219,392	9 755 136,00	728,83	51,02	677,81	1576	291237,15
28	F173	161	11,5	184,98	138,735	1215,3186	9 722 548,80	726,40	50,85	675,55	1571	290264,26
29	F137	122	15	183	137,25	1202,31	9 618 480,00	718,62	50,30	668,32	1554	287157,32
30	F170	177	10	176,76	132,57	1161,3132	9 290 505,60	694,12	48,59	645,53	1501	277365,72
31	F13	67	25,5	170,85	128,1375	1122,4845	8 979 876,00	670,91	46,96	623,95	1451	268091,95
32	F175	312	5,4	168,47	126,3525	1106,8479	8 854 783,20	661,56	46,31	615,25	1431	264357,34
33	F85	120	14	168	126	1103,76	8 830 080,00	659,72	46,18	613,54	1427	263619,83
34	F138	113	14,8	166,5	124,875	1093,905	8 751 240,00	653,83	45,77	608,06	1414	261266,08
35	F73	127	13	164,67	123,5025	1081,8819	8 655 055,20	646,64	45,26	601,38	1399	258394,51
36	F81	128	12,6	161,7	121,275	1062,369	8 498 952,00	634,98	44,45	590,53	1373	253734,09
37	F75	123	13	159,8	119,85	1049,886	8 399 088,00	627,52	43,93	583,59	1357	250752,67
38	F68	120	13,2	158,4	118,8	1040,688	8 325 504,00	622,02	43,54	578,48	1345	248555,84
39	F36	120	13	156	117	1024,92	8 199 360,00	612,59	42,88	569,71	1325	244789,84
40	F46	120	13	156	117	1024,92	8 199 360,00	612,59	42,88	569,71	1325	244789,84
41	F48	120	13	156	117	1024,92	8 199 360,00	612,59	42,88	569,71	1325	244789,84
42	F69	120	13	156	117	1024,92	8 199 360,00	612,59	42,88	569,71	1325	244789,84
43	F70	120	13	156	117	1024,92	8 199 360,00	612,59	42,88	569,71	1325	244789,84
44	F86	120	13	156	117	1024,92	8 199 360,00	612,59	42,88	569,71	1325	244789,84
45	F90	120	13	156	117	1024,92	8 199 360,00	612,59	42,88	569,71	1325	244789,84
46	F91	120	13	156	117	1024,92	8 199 360,00	612,59	42,88	569,71	1325	244789,84
47	F97	120	13	156	117	1024,92	8 199 360,00	612,59	42,88	569,71	1325	244789,84
48	F119	120	13	156	117	1024,92	8 199 360,00	612,59	42,88	569,71	1325	244789,84
49	F125	120	13	156	117	1024,92	8 199 360,00	612,59	42,88	569,71	1325	244789,84
50	F147	120	13	156	117	1024,92	8 199 360,00	612,59	42,88	569,71	1325	244789,84
51	F174	140	11	153,55	115,1625	1008,8235	8 070 588,00	602,97	42,21	560,77	1304	240945,39
52	F53	115	12,5	143,18	107,385	940,6926	7 525 540,80	562,25	39,36	522,89	1216	224673,14
53	F71	113	12,5	140,63	105,4725	923,9391	7 391 512,80	552,24	38,66	513,58	1194	220671,77

54	F171	164	8,5	139,69	104,7675	917,7633	7 342 106,40	548,55	38,40	510,15	1186	219196,75
55	F132	118	11,7	137,48	103,11	903,2436	7 342 100,40	539,87	37,79	502,08	1168	215728,89
56	F132	106	12,8	135,46	103,11	889,9722	7 223 948,80	531,94	37,79	494,70	1150	213728,89
57					·		·					212359,18
-	F87	130	10,4	135,2	101,4	888,264	7 106 112,00	530,92	37,16	493,75	1148	· ·
58	F135	106	12,5	132,81	99,6075	872,5617	6 980 493,60	521,53	36,51	485,02	1128	208400,89
59	F165	196	6,7	131,32	98,49	862,7724	6 902 179,20	515,68	36,10	479,58	1115	206062,83
60	F50	110	11,9	131,01	98,2575	860,7357	6 885 885,60	514,46	36,01	478,45	1113	205576,39
61	F51	110	11,9	131,01	98,2575	860,7357	6 885 885,60	514,46	36,01	478,45	1113	205576,39
62	F152	110	11,9	131,01	98,2575	860,7357	6 885 885,60	514,46	36,01	478,45	1113	205576,39
63	F162	121	10,4	125,53	94,1475	824,7321	6 597 856,80	492,94	34,51	458,44	1066	196977,36
64	F164	217	5,6	121,52	91,14	798,3864	6 387 091,20	477,20	33,40	443,79	1032	190685,01
65	F38	105	11,4	119,39	89,5425	784,3923	6 275 138,40	468,83	32,82	436,01	1014	187342,69
66	F126	95	12	114	85,5	748,98	5 991 840,00	447,67	31,34	416,33	968	178884,88
67	F116	67	17	113,39	85,0425	744,9723	5 959 778,40	445,27	31,17	414,10	963	177927,69
68	F169	175	6,3	110,25	82,6875	724,3425	5 794 740,00	432,94	30,31	402,63	936	173000,51
69	F105	100	10,8	108,3	81,225	711,531	5 692 248,00	425,28	29,77	395,51	920	169940,64
70	F123	100	10,8	108,3	81,225	711,531	5 692 248,00	425,28	29,77	395,51	920	169940,64
71	F149	100	10,8	108,3	81,225	711,531	5 692 248,00	425,28	29,77	395,51	920	169940,64
72	F159	100	10,8	108,3	81,225	711,531	5 692 248,00	425,28	29,77	395,51	920	169940,64
73	F143	79	13,3	105,3	78,975	691,821	5 534 568,00	413,50	28,95	384,56	894	165233,14
74	F168	227	4,6	104,23	78,1725	684,7911	5 478 328,80	409,30	28,65	380,65	885	163554,14
75	F37	98	10,6	103,98	77,985	683,1486	5 465 188,80	408,32	28,58	379,74	883	163161,84
76	F88	88	11,5	101,58	76,185	667,3806	5 339 044,80	398,89	27,92	370,97	863	159395,85
77	F167	235	4,2	98,49	73,8675	647,0793	5 176 634,40	386,76	27,07	359,69	836	154547,13
78	F95	83	11,5	95,36	71,52	626,5152	5 012 121,60	374,47	26,21	348,26	810	149635,64
79	F160	90	9,8	87,75	65,8125	576,5175	4 612 140,00	344,58	24,12	320,46	745	137694,29
80	F96	71	12	85	63,75	558,45	4 467 600,00	333,79	23,36	310,42	722	133379,08
81	F11	83	9	74,62	55,965	490,2534	3 922 027,20	293,02	20,51	272,51	634	117091,14
82	F99	60	11,8	71,3	53,475	468,441	3 747 528,00	279,99	19,60	260,39	606	111881,51
83	F78	75	8,1	60,9	45,675	400,113	3 200 904,00	239,15	16,74	222,41	517	95562,19

1 1	i	ı		i	i i			i		j i	Ì	i i
84	F108	75	8,1	60,9	45,675	400,113	3 200 904,00	239,15	16,74	222,41	517	95562,19
85	F113	42	13,2	55	41,25	361,35	2 890 800,00	215,98	15,12	200,86	467	86304,11
86	F141	42	12	50	37,5	328,5	2 628 000,00	196,34	13,74	182,60	425	78458,28
87	F140	50	8	40	30	262,8	2 102 400,00	157,08	11,00	146,08	340	62766,63
88	F136	19	18,5	35,08	26,31	230,4756	1 843 804,80	137,76	9,64	128,11	298	55046,33
89	F100	25	13,8	34,5	25,875	226,665	1 813 320,00	135,48	9,48	125,99	293	54136,22
90	F10	50	6,4	32	24	210,24	1 681 920,00	125,66	8,80	116,86	272	50213,30
91	F144	50	5,8	29	21,75	190,53	1 524 240,00	113,88	7,97	105,91	246	45505,80
92	F8	50	5,4	27,05	20,2875	177,7185	1 421 748,00	106,22	7,44	98,79	230	42445,93
93	F82	50	5,4	27,05	20,2875	177,7185	1 421 748,00	106,22	7,44	98,79	230	42445,93
94	F156	12	16	19,2	14,4	126,144	1 009 152,00	75,40	5,28	70,12	163	30127,98
95	F14	40	4,5	18	13,5	118,26	946 080,00	70,68	4,95	65,74	153	28244,98
96	F12	40	4,3	17,32	12,99	113,7924	910 339,20	68,01	4,76	63,25	147	27177,95
97	F63	40	4,3	17,32	12,99	113,7924	910 339,20	68,01	4,76	63,25	147	27177,95
98	F61	38	4,2	15,96	11,97	104,8572	838 857,60	62,67	4,39	58,29	136	25043,88
99	F148	10	14	14,59	10,9425	95,8563	766 850,40	57,29	4,01	53,28	124	22894,13
100	F150	10	14	14,58	10,935	95,7906	766 324,80	57,25	4,01	53,25	124	22878,44
101	F62	36	4	14,4	10,8	94,608	756 864,00	56,55	3,96	52,59	122	22595,99
102	F66	36	3,9	14,04	10,53	92,2428	737 942,40	55,13	3,86	51,27	119	22031,09
103	F67	36	3,8	13,68	10,26	89,8776	719 020,80	53,72	3,76	49,96	116	21466,19
104	F26	35	3,9	13,65	10,2375	89,6805	717 444,00	53,60	3,75	49,85	116	21419,11
105	F151	10	13,1	13,65	10,2375	89,6805	717 444,00	53,60	3,75	49,85	116	21419,11
106	F80	7	17,9	13,28	9,96	87,2496	697 996,80	52,15	3,65	48,50	113	20838,52
107	F19	35	3,7	12,95	9,7125	85,0815	680 652,00	50,85	3,56	47,29	110	20320,70
108	F101	9	13,5	12,49	9,3675	82,0593	656 474,40	49,05	3,43	45,61	106	19598,88
109	F24	14	8,8	12,32	9,24	80,9424	647 539,20	48,38	3,39	44,99	105	19332,12
110	F23	34	3,5	11,9	8,925	78,183	625 464,00	46,73	3,27	43,46	101	18673,07
111	F16	20	5	10	7,5	65,7	525 600,00	39,27	2,75	36,52	85	15691,66
112	F18	10	10	10	7,5	65,7	525 600,00	39,27	2,75	36,52	85	15691,66
113	F27	28	3,2	8,96	6,72	58,8672	470 937,60	35,18	2,46	32,72	76	14059,72

		Totaux		19277,96	14 458,54	126 656,79	1 013 254 308,00	75702,76	5299,19	70403,57	163729,23	30250453,98
133	F57	2	9,2	1,38	1,035	9,0666	72 532,80	5,42	0,38	5,04	12	2165,45
132	F117	1	13	1,52	1,14	9,9864	79 891,20	5,97	0,42	5,55	13	2385,13
131	F131	7	2,8	2,02	1,515	13,2714	106 171,20	7,93	0,56	7,38	17	3169,71
130	F104	7	4	2,9	2,175	19,053	152 424,00	11,39	0,80	10,59	25	4550,58
129	F109	3	12,5	3,13	2,3475	20,5641	164 512,80	12,29	0,86	11,43	27	4911,49
128	F102	3	11,2	3,73	2,7975	24,5061	196 048,80	14,65	1,03	13,62	32	5852,99
127	F64	20	3	6	4,5	39,42	315 360,00	23,56	1,65	21,91	51	9414,99
126	F72	25	2,6	6,5	4,875	42,705	341 640,00	25,52	1,79	23,74	55	10199,58
125	F25	10	6,7	6,65	4,9875	43,6905	349 524,00	26,11	1,83	24,29	56	10434,95
124	F21	25	2,8	6,88	5,16	45,2016	361 612,80	27,02	1,89	25,13	58	10795,86
123	F22	12	6	7,2	5,4	47,304	378 432,00	28,27	1,98	26,29	61	11297,99
122	F20	26	2,9	7,41	5,5575	48,6837	389 469,60	29,10	2,04	27,06	63	11627,52
121	F89	7	10,2	7,48	5,61	49,1436	393 148,80	29,37	2,06	27,32	64	11737,36
120	F124	26	2,9	7,65	5,7375	50,2605	402 084,00	30,04	2,10	27,94	65	12004,12
119	F7	16	5	7,75	5,8125	50,9175	407 340,00	30,43	2,13	28,30	66	12161,03
118	F55	6	12,5	7,81	5,8575	51,3117	410 493,60	30,67	2,15	28,52	66	12255,18
117	F17	27	2,9	7,83	5,8725	51,4431	411 544,80	30,75	2,15	28,60	67	12286,57
116	F118	6	13	8,13	6,0975	53,4141	427 312,80	31,93	2,23	29,69	69	12757,32
115	F9	15	6	8,7	6,525	57,159	457 272,00	34,16	2,39	31,77	74	13651,74
114	F29	28	3,2	8,96	6,72	58,8672	470 937,60	35,18	2,46	32,72	76	14059,72

الملخص 🔞

يتعلق هذا العمل المتواضع بدراسة إمكانات الطاقة الخاصة بطبقة المياه الجوفية «albien» وإمكانية استغلالها من خلال دمج المحطات الكهرمائية الصغيرة.

كان التحقيق حول نظام الخزان الجوفي في الصحراء الشمالية أمرًا حتميًا لتحديد كمية هذه الطاقة وبالتالي تقدير مدى استخدامها خاصة في المجال الزراعي. تم إنشاء قائمة من 133 بئراً تحتوي على بيانات تتعلق بالطاقة على إجمالي 295 بئر. إمكانات الطاقة الاجمالي هي 168 جيجاوات ساعة / سنة، أي ما يعادل 14520 طن من معادل النفط تُفقد سنويًا. تم إنشاء خريطة توزيع الطاقة لطبقة المياه الجوفية القارية.

إن استخدام محطة طاقة كهرومائية صغيرة لاختبار كفاءة هذا الجهاز على العديد من الآبار وفي مواقف مختلفة، أخبرنا عن الإمكانات الحقيقية لهذا الخزان الجوفي. من الضروري تحديد حجم المعدات بشكل صحيح حتى نتمكن من الاستفادة من أفضل اداء.

أبلغتنا محاكاة الدمج لمحطات الطاقة الكهرمائية الصغيرة التي تم إنشاؤها باستخدام برنامج ®RETScreen بإمكانيات الطاقة الحقيقية، التي تتجاوز 126 جيجاواط / ساعة. إن إمكانات الطاقة هذه، لتقدير يعتمد على أسعار الرياح والطاقة الشمسية وما يقابل 8 دج /كيلوواط ساعة، تقدم دخلًا سنويًا يتجاوز مليار دينار جزائري. كما أبرزنا في النائج أنه يمكن تقليل الغازات المسببة للاحتباس الحراري بنسبة 93٪ ما يقابل 70400 طن من ثاني أكسيد الكربون في السنة. دراسة الدمج لها تأثير إيجابي على البيئة.

المفاتيح :Albien - مياه جوفية عميقة - الطاقة الهيدروليكية - محطة مصغرة لتوليد الطاقة الكهرومائية - قوة المياه - تبريد المياه - سقي - التدفئة - الطاقة الحرارية الأرضية.

Résumé R

Ce modeste travail porte sur l'étude du potentiel énergétique de la nappe albienne et la possibilité de son exploitation par l'intégration de petites centrales hydroélectriques.

L'enquête sur le Système Aquifère du Sahara Septentrional a été inévitable pour quantifier cette énergie et donc apprécier l'étendue de son utilisation surtout dans le domaine agricole. Une liste de 133 forages a été établi ayant les données en relation avec l'énergie sur un total de 295 forages. Le potentiel énergétique cumulé est de 168GWh/an, l'équivalent à 14520 tep perdues annuellement. Une carte de distribution énergétique de la nappe du Continental Intercalaire a été créé.

L'utilisation d'une microcentrale hydroélectrique pour tester l'efficacité de ce dispositif sur plusieurs forages et ce dans différentes situations, nous a renseigné sur le vrai potentiel de cette nappe. Il est impératif de bien dimensionner son équipement pour pouvoir bénéficier du meilleur rendement.

La simulation d'intégration des microcentrales hydroélectriques faite grâce au logiciel RETScreen® nous a renseigné sur le potentiel énergétique réelle, dépassant les 126 GWh/an. Ce potentiel énergétique, pour une estimation basée sur les prix du kWh éolien et solaire et correspondant à 8 DA/kWh, présente un revenu annuel dépassant 1 Milliard de dinars algérien. Nous avons aussi fait ressortir dans les résultats qu'une réduction des GES de 93%, soit 70400 tCO₂/an était envisageable. Cette étude d'intégration a un impact positif sur l'environnement.

<u>Mots Clés</u>: Albien – Continental Intercalaire – Puissance hydraulique – Microcentrale Hydroélectrique – Potentiel énergétique – Refroidissement – Irrigation – Chauffage – Géothermie.

Summary (R

This modest work concerns the study of the energy potential of the Albian aquifer and the possibility of its exploitation through the integration of small hydroelectric power plants.

The survey of the Northern Sahara Aquifer System was required to quantify this energy and thus to assess the extent of its use, especially in the agricultural field. A list of 133 boreholes was drawn up with energy-related data on a total of 295 boreholes. The cumulative energy potential is about 168GWh/year, equivalent to 14520 toe (ton of oil equivalent) lost annually. An energy distribution map of the Continental Intercalary aquifer was created.

The use of a micro-hydroelectric power plant to test the efficiency of this device on several boreholes in different situations has given us information on the true potential of this water aquifer. It is imperative to properly size the equipment to be able to benefit from the best efficiency.

The RETScreen® software integration simulation of micro-hydropower plants provided us with information on the real energy potential, exceeding 126 GWh/year. This energy potential, for an estimate based on wind and solar kWh prices and corresponding to 8 DA/kWh, presents an annual income exceeding 1 billion Algerian dinars. We also pointed out in the results that a GHG reduction of 93%, i.e. 70400 tCO₂/year was possible. This integration study has a positive impact on the environment.

<u>Key Words:</u> Albien - Continental Intercalary - Hydropower - Micro Hydroelectric Power Plant - Energy Potential - Cooling - Irrigation - Heating - Geothermal.